CGC: Contrastive Graph Clustering for Community Detection and Tracking
- URL: http://arxiv.org/abs/2204.08504v4
- Date: Tue, 28 Mar 2023 01:16:23 GMT
- Title: CGC: Contrastive Graph Clustering for Community Detection and Tracking
- Authors: Namyong Park, Ryan Rossi, Eunyee Koh, Iftikhar Ahamath Burhanuddin,
Sungchul Kim, Fan Du, Nesreen Ahmed, Christos Faloutsos
- Abstract summary: We develop CGC, a novel end-to-end framework for graph clustering.
CGC learns node embeddings and cluster assignments in a contrastive graph learning framework.
We extend CGC for time-evolving data, where temporal graph clustering is performed in an incremental learning fashion.
- Score: 33.48636823444052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given entities and their interactions in the web data, which may have
occurred at different time, how can we find communities of entities and track
their evolution? In this paper, we approach this important task from graph
clustering perspective. Recently, state-of-the-art clustering performance in
various domains has been achieved by deep clustering methods. Especially, deep
graph clustering (DGC) methods have successfully extended deep clustering to
graph-structured data by learning node representations and cluster assignments
in a joint optimization framework. Despite some differences in modeling choices
(e.g., encoder architectures), existing DGC methods are mainly based on
autoencoders and use the same clustering objective with relatively minor
adaptations. Also, while many real-world graphs are dynamic, previous DGC
methods considered only static graphs. In this work, we develop CGC, a novel
end-to-end framework for graph clustering, which fundamentally differs from
existing methods. CGC learns node embeddings and cluster assignments in a
contrastive graph learning framework, where positive and negative samples are
carefully selected in a multi-level scheme such that they reflect hierarchical
community structures and network homophily. Also, we extend CGC for
time-evolving data, where temporal graph clustering is performed in an
incremental learning fashion, with the ability to detect change points.
Extensive evaluation on real-world graphs demonstrates that the proposed CGC
consistently outperforms existing methods.
Related papers
- Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
We propose a novel deep graph clustering method called CGCN.
Our approach introduces contrastive signals and deep structural information into the pre-training process.
Our method has been experimentally validated on multiple real-world graph datasets.
arXiv Detail & Related papers (2024-08-08T09:49:26Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - GLCC: A General Framework for Graph-level Clustering [5.069852282550117]
This paper studies the problem of graph-level clustering, which is a novel yet challenging task.
We propose a general graph-level clustering framework named Graph-Level Contrastive Clustering (GLCC)
Experiments on a range of well-known datasets demonstrate the superiority of our proposed GLCC over competitive baselines.
arXiv Detail & Related papers (2022-10-21T11:08:10Z) - Dual Contrastive Attributed Graph Clustering Network [6.796682703663566]
We propose a generic framework called Dual Contrastive Attributed Graph Clustering Network (DCAGC)
In DCAGC, by leveraging Neighborhood Contrast Module, the similarity of the neighbor nodes will be maximized and the quality of the node representation will be improved.
All the modules of DCAGC are trained and optimized in a unified framework, so the learned node representation contains clustering-oriented messages.
arXiv Detail & Related papers (2022-06-16T03:17:01Z) - Fine-grained Graph Learning for Multi-view Subspace Clustering [2.4094285826152593]
We propose a fine-grained graph learning framework for multi-view subspace clustering (FGL-MSC)
The main challenge is how to optimize the fine-grained fusion weights while generating the learned graph that fits the clustering task.
Experiments on eight real-world datasets show that the proposed framework has comparable performance to the state-of-the-art methods.
arXiv Detail & Related papers (2022-01-12T18:00:29Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.