論文の概要: Dress Code: High-Resolution Multi-Category Virtual Try-On
- arxiv url: http://arxiv.org/abs/2204.08532v1
- Date: Mon, 18 Apr 2022 19:31:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 13:29:38.557773
- Title: Dress Code: High-Resolution Multi-Category Virtual Try-On
- Title(参考訳): ドレスコード:高解像度マルチカテゴリ仮想トライオン
- Authors: Davide Morelli, Matteo Fincato, Marcella Cornia, Federico Landi, Fabio
Cesari, Rita Cucchiara
- Abstract要約: Dress Codeは、イメージベースの仮想試行用データセットよりも3倍大きい。
我々は,画像レベルやパッチレベルではなく,ピクセルレベルでの予測を行うセマンティック・アウェア・ディスクリミネータを活用する。
- 参考スコア(独自算出の注目度): 30.166151802234555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based virtual try-on strives to transfer the appearance of a clothing
item onto the image of a target person. Prior work focuses mainly on upper-body
clothes (e.g. t-shirts, shirts, and tops) and neglects full-body or lower-body
items. This shortcoming arises from a main factor: current publicly available
datasets for image-based virtual try-on do not account for this variety, thus
limiting progress in the field. To address this deficiency, we introduce Dress
Code, which contains images of multi-category clothes. Dress Code is more than
3x larger than publicly available datasets for image-based virtual try-on and
features high-resolution paired images (1024 x 768) with front-view, full-body
reference models. To generate HD try-on images with high visual quality and
rich in details, we propose to learn fine-grained discriminating features.
Specifically, we leverage a semantic-aware discriminator that makes predictions
at pixel-level instead of image- or patch-level. Extensive experimental
evaluation demonstrates that the proposed approach surpasses the baselines and
state-of-the-art competitors in terms of visual quality and quantitative
results. The Dress Code dataset is publicly available at
https://github.com/aimagelab/dress-code.
- Abstract(参考訳): イメージベースの仮想試行は、衣料品の外観を対象者のイメージに転送する試みである。
先行研究は主に上半身の服(tシャツ、シャツ、トップスなど)に重点を置いており、全身または下半身のアイテムを無視している。
イメージベースの仮想トライオン用の現在公開されているデータセットは、この多様性を考慮せず、フィールドの進歩を制限している。
この不足に対処するために,複数カテゴリの服の画像を含むドレスコードを導入する。
Dress Codeは、イメージベースの仮想試行用データセットよりも3倍大きく、フロントビューとフルボディ参照モデルを備えた高解像度のペアイメージ(1024 x 768)を備えている。
高画質で精細度に富んだhdトライオン画像を生成するために,細かな粒度の識別機能を学ぶことを提案する。
具体的には,イメージレベルやパッチレベルではなく,ピクセルレベルでの予測を行う意味認識判別器を活用する。
広汎な実験的評価は,提案手法が視覚的品質と定量的な結果の点で,ベースラインや最先端の競合に勝っていることを示している。
Dress Codeデータセットはhttps://github.com/aimagelab/dress-code.comで公開されている。
関連論文リスト
- Try-On-Adapter: A Simple and Flexible Try-On Paradigm [42.2724473500475]
オンラインショッピングで広く使われている画像ベースの仮想試着は、特定の衣服に着飾った自然な服装の人のイメージを作成することを目的としている。
従来の手法では、元のモデルの立像の特定の部分をマスキングし、マスクされた領域に塗布することで、対応する参照服を身に着けたモデルのリアルなイメージを生成する。
本稿では,既存の塗装パラダイムと異なる塗装パラダイムであるトライオンアダプタ(TOA)を提案する。
論文 参考訳(メタデータ) (2024-11-15T13:35:58Z) - OutfitAnyone: Ultra-high Quality Virtual Try-On for Any Clothing and Any Person [38.69239957207417]
OutfitAnyoneは、バーチャル衣料品のトライアルのために、高忠実でディテールに一貫性のある画像を生成する。
ポーズ、ボディシェイプ、広範囲な適用性など、スケーラビリティを規定する要因を自分自身と区別する。
さまざまなシナリオにおけるOutfitAnyoneのパフォーマンスは、実世界のデプロイに対する実用性と準備性を示している。
論文 参考訳(メタデータ) (2024-07-23T07:04:42Z) - IMAGDressing-v1: Customizable Virtual Dressing [58.44155202253754]
IMAGDressing-v1は、固定された衣服とオプション条件で自由に編集可能な人間の画像を生成する仮想ドレッシングタスクである。
IMAGDressing-v1は、CLIPのセマンティック特徴とVAEのテクスチャ特徴をキャプチャする衣料UNetを組み込んでいる。
本稿では,凍結自己注意とトレーニング可能なクロスアテンションを含むハイブリッドアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2024-07-17T16:26:30Z) - MV-VTON: Multi-View Virtual Try-On with Diffusion Models [91.71150387151042]
画像ベースの仮想試着の目的は、与えられた衣服を自然に身に着けている対象者の画像を生成することである。
既存の方法は、前頭服を用いた正面試着のみに焦点をあてる方法である。
本稿では,服の複数ビューからドレッシング結果を再構築することを目的としたMulti-View Virtual Try-ON(MV-VTON)を紹介する。
論文 参考訳(メタデータ) (2024-04-26T12:27:57Z) - Better Fit: Accommodate Variations in Clothing Types for Virtual Try-on [25.550019373321653]
画像ベースの仮想試着は、ターゲットとなる服を着替えたモデル画像に転送することを目的としている。
トレーニングマスクを動的に調整する適応型マスクトレーニングパラダイムを提案する。
未ペアの試行検証のために、総合的なクロストライオンベンチマークを構築した。
論文 参考訳(メタデータ) (2024-03-13T12:07:14Z) - StableVITON: Learning Semantic Correspondence with Latent Diffusion
Model for Virtual Try-On [35.227896906556026]
衣服画像と人物画像が与えられた場合、画像ベースの仮想試行は、衣服画像の特徴を自然に正確に反映した、カスタマイズされた画像を生成することを目的としている。
本研究では,事前学習した拡散モデルの適用性を拡張し,仮想試行作業に独立して利用できるようにすることを目的とする。
提案するゼロ・クロスアテンションブロックは, 意味的対応を学習することで衣服の細部を保存できるだけでなく, ワープ過程における事前学習モデル固有の知識を利用して高忠実度画像を生成する。
論文 参考訳(メタデータ) (2023-12-04T08:27:59Z) - Weakly Supervised High-Fidelity Clothing Model Generation [67.32235668920192]
本稿では,このシナリオに対応するために,DGP (Deep Generative Projection) と呼ばれる安価でスケーラブルな弱教師付き手法を提案する。
衣服と身体の粗いアライメントをStyleGAN空間に投影することで、フォトリアリスティックな着用結果が得られることを示す。
論文 参考訳(メタデータ) (2021-12-14T07:15:15Z) - Arbitrary Virtual Try-On Network: Characteristics Preservation and
Trade-off between Body and Clothing [85.74977256940855]
本報告では,オールタイプの衣料品を対象としたArbitrary Virtual Try-On Network (AVTON)を提案する。
AVTONは、ターゲット服と参照者の特性を保存・交換することで、現実的な試行画像を合成することができる。
提案手法は,最先端の仮想試行法と比較して性能が向上する。
論文 参考訳(メタデータ) (2021-11-24T08:59:56Z) - Apparel-invariant Feature Learning for Apparel-changed Person
Re-identification [70.16040194572406]
ほとんどのパブリックなReIDデータセットは、人の外観がほとんど変化しない短時間のウィンドウで収集される。
ショッピングモールのような現実世界の応用では、同じ人の服装が変化し、異なる人が同様の服を着ることがある。
着替えなどの場合や、類似の服を着ている場合などにおいて、アパレル不変の人物表現を学ぶことは極めて重要である。
論文 参考訳(メタデータ) (2020-08-14T03:49:14Z) - Towards Photo-Realistic Virtual Try-On by Adaptively
Generating$\leftrightarrow$Preserving Image Content [85.24260811659094]
本稿では,適応コンテンツ生成・保存ネットワーク(ACGPN)という新しいビジュアル・トライオン・ネットワークを提案する。
ACGPNはまず、試行錯誤後に変更される参照画像のセマンティックレイアウトを予測する。
第二に、服のワープモジュールは、生成されたセマンティックレイアウトに従って衣服の画像をワープする。
第3に、コンテンツ融合のための塗装モジュールは、すべての情報(例えば、参照画像、セマンティックレイアウト、歪んだ衣服)を統合して、人間の身体の各意味部分を適応的に生成する。
論文 参考訳(メタデータ) (2020-03-12T15:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。