論文の概要: G2GT: Retrosynthesis Prediction with Graph to Graph Attention Neural
Network and Self-Training
- arxiv url: http://arxiv.org/abs/2204.08608v1
- Date: Tue, 19 Apr 2022 01:55:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 15:09:14.758705
- Title: G2GT: Retrosynthesis Prediction with Graph to Graph Attention Neural
Network and Self-Training
- Title(参考訳): G2GT:グラフからグラフへの注意ニューラルネットワークと自己学習による再合成予測
- Authors: Zaiyun Lin (Beijing Stonewise Technology) and Shiqiu Yin (Beijing
Stonewise Technology) and Lei Shi (Beijing Stonewise Technology) and Wenbiao
Zhou (Beijing Stonewise Technology) and YingSheng Zhang (Beijing Stonewise
Technology)
- Abstract要約: 再合成予測は有機化学および関連分野における基本的な課題の1つである。
本稿では,グラフエンコーダとグラフデコーダを標準トランス構造上に構築した新しいグラフ-グラフ変換モデルG2GTを提案する。
本稿では,データ拡張手法である自己学習が,モデルの性能を著しく向上させることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrosynthesis prediction is one of the fundamental challenges in organic
chemistry and related fields. The goal is to find reactants molecules that can
synthesize product molecules. To solve this task, we propose a new
graph-to-graph transformation model, G2GT, in which the graph encoder and graph
decoder are built upon the standard transformer structure. We also show that
self-training, a powerful data augmentation method that utilizes unlabeled
molecule data, can significantly improve the model's performance. Inspired by
the reaction type label and ensemble learning, we proposed a novel weak
ensemble method to enhance diversity. We combined beam search, nucleus, and
top-k sampling methods to further improve inference diversity and proposed a
simple ranking algorithm to retrieve the final top-10 results. We achieved new
state-of-the-art results on both the USPTO-50K dataset, with top1 accuracy of
54%, and the larger data set USPTO-full, with top1 accuracy of 50%, and
competitive top-10 results.
- Abstract(参考訳): 再合成予測は有機化学および関連分野における基本的な課題の1つである。
目的は、生成分子を合成できる反応分子を見つけることである。
そこで本研究では,グラフエンコーダとグラフデコーダを標準トランスフォーマ構造上に構築した新しいグラフ対グラフ変換モデルg2gtを提案する。
また,ラベルのない分子データを利用した強力なデータ拡張手法である自己学習が,モデルの性能を著しく向上することを示す。
反応型ラベルとアンサンブル学習に触発され,多様性を高めるための弱いアンサンブル法を提案した。
ビームサーチ, 核, トップkサンプリングを組み合わせ, 推論の多様性をさらに向上させ, 最終トップ10結果を得るための簡単なランキングアルゴリズムを提案した。
その結果,USPTO-50Kデータセットは54%の精度で,USPTO-Fullデータセットは50%の精度で,競合するトップ10は50%の精度で達成できた。
関連論文リスト
- MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
化学構造を視覚的に認識するためにMolGrapherを導入する。
すべての候補原子と結合をノードとして扱い、それらをグラフ化する。
グラフニューラルネットワークを用いてグラフ内の原子と結合ノードを分類する。
論文 参考訳(メタデータ) (2023-08-23T16:16:11Z) - Permutation Equivariant Graph Framelets for Heterophilous Graph Learning [6.679929638714752]
本研究では,Haar型グラフフレームレットの構築により,マルチスケール抽出を実現する手法を開発した。
ヘテロ親和性グラフの特定のデータセット上で,我々のモデルが最高の性能を達成できることが示される。
論文 参考訳(メタデータ) (2023-06-07T09:05:56Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Integrating Transformer and Autoencoder Techniques with Spectral Graph
Algorithms for the Prediction of Scarcely Labeled Molecular Data [2.8360662552057323]
この課題に対処するために、Merriman-Bence-Osher(MBO)テクニックを取り入れたグラフベースの3つのモデルを導入する。
具体的には、MBO方式のグラフベースの修正は、自家製のトランスフォーマーやオートエンコーダなどの最先端技術と統合されている。
提案したモデルは,5つのベンチマークデータセットを用いて検証する。
論文 参考訳(メタデータ) (2022-11-12T22:45:32Z) - Condensing Graphs via One-Step Gradient Matching [50.07587238142548]
ネットワーク重みを訓練せずに1ステップのみの勾配マッチングを行う1ステップ勾配マッチング方式を提案する。
我々の理論的分析は、この戦略が実際のグラフの分類損失を減少させる合成グラフを生成することができることを示している。
特に、元のパフォーマンスの最大98%を近似しながら、データセットサイズを90%削減することが可能です。
論文 参考訳(メタデータ) (2022-06-15T18:20:01Z) - Permutation invariant graph-to-sequence model for template-free
retrosynthesis and reaction prediction [2.5655440962401617]
本稿では,テキスト生成のためのトランスフォーマーモデルのパワーと,分子グラフエンコーダの置換不変性を組み合わせた新しいGraph2SMILESモデルについて述べる。
エンドツーエンドアーキテクチャとして、Graph2SMILESは、分子から分子への変換を含むあらゆるタスクにおいて、Transformerのドロップイン置換として使用できる。
論文 参考訳(メタデータ) (2021-10-19T01:23:15Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z) - Uncovering the Folding Landscape of RNA Secondary Structure with Deep
Graph Embeddings [71.20283285671461]
このようなグラフ埋め込みを学習するための幾何散乱オートエンコーダ(GSAE)ネットワークを提案する。
我々の埋め込みネットワークは、最近提案された幾何散乱変換を用いて、まずリッチグラフ特徴を抽出する。
GSAEは、構造とエネルギーの両方でRNAグラフを整理し、ビスタブルRNA構造を正確に反映していることを示す。
論文 参考訳(メタデータ) (2020-06-12T00:17:59Z) - Graph-Aware Transformer: Is Attention All Graphs Need? [5.240000443825077]
GRaph-Aware Transformer (GRAT)はTransformerベースの最初のモデルであり、グラフ全体をエンドツーエンドでエンコードしデコードすることができる。
GRATはQM9ベンチマークで4つの回帰タスクに対する最先端のパフォーマンスを含む非常に有望な結果を示している。
論文 参考訳(メタデータ) (2020-06-09T12:13:56Z) - A Graph to Graphs Framework for Retrosynthesis Prediction [42.99048270311063]
計算化学における基本的な問題は、標的分子を合成する反応剤の集合を見つけることである。
本稿では, 標的分子グラフを反応分子グラフの集合に変換することにより, G2Gsと呼ばれる新しいテンプレートフリーアプローチを提案する。
G2Gsは、トップ1の精度で既存のテンプレートフリーアプローチを最大63%上回っている。
論文 参考訳(メタデータ) (2020-03-28T06:16:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。