論文の概要: Study of Robust Sparsity-Aware RLS algorithms with Jointly-Optimized
Parameters for Impulsive Noise Environments
- arxiv url: http://arxiv.org/abs/2204.08990v1
- Date: Sat, 9 Apr 2022 01:13:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-24 16:11:15.859061
- Title: Study of Robust Sparsity-Aware RLS algorithms with Jointly-Optimized
Parameters for Impulsive Noise Environments
- Title(参考訳): 重畳性雑音環境に対する協調最適化パラメータを用いたロバストスパルシリティアウェアrlsアルゴリズムの検討
- Authors: Y. Yu, L. Lu, Y. Zakharov, R. C. de Lamare and B. Chen
- Abstract要約: 提案アルゴリズムは,ロバスト性およびスペーサ性を考慮したペナルティの特定の基準を置き換えることによって,複数のアルゴリズムを一般化する。
忘れ係数と空間的ペナルティパラメータを協調的に最適化することにより,共同最適化されたS-RRLS (JO-S-RRLS) アルゴリズムを開発した。
インパルスノイズシナリオのシミュレーションにより、提案したS-RRLSアルゴリズムとJO-S-RRLSアルゴリズムが既存の手法より優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a unified sparsity-aware robust recursive least-squares
RLS (S-RRLS) algorithm for the identification of sparse systems under impulsive
noise. The proposed algorithm generalizes multiple algorithms only by replacing
the specified criterion of robustness and sparsity-aware penalty. Furthermore,
by jointly optimizing the forgetting factor and the sparsity penalty parameter,
we develop the jointly-optimized S-RRLS (JO-S-RRLS) algorithm, which not only
exhibits low misadjustment but also can track well sudden changes of a sparse
system. Simulations in impulsive noise scenarios demonstrate that the proposed
S-RRLS and JO-S-RRLS algorithms outperform existing techniques.
- Abstract(参考訳): 本稿では, インパルス雑音下でのスパースシステムの同定のための, 再帰最小二乗法(S-RRLS)アルゴリズムを提案する。
提案手法はロバスト性やスパース性に配慮したペナルティの基準を置き換えることで,複数のアルゴリズムを一般化する。
さらに, 誤り調整が低いだけでなく, スパース系の急激な変化を追尾できる共同最適化S-RRLS (JO-S-RRLS) アルゴリズムを開発した。
インパルスノイズシナリオのシミュレーションにより、提案したS-RRLSアルゴリズムとJO-S-RRLSアルゴリズムが既存の手法より優れていることを示す。
関連論文リスト
- Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Parameter optimization comparison in QAOA using Stochastic Hill Climbing with Random Re-starts and Local Search with entangled and non-entangled mixing operators [0.0]
本研究では,Hill Climbing with Random Restarts (SHC-RR) の有効性を検討した。
以上の結果から,SHC-RRはLSアプローチよりも優れており,より単純な最適化機構にもかかわらず優れた有効性を示した。
論文 参考訳(メタデータ) (2024-05-14T20:12:17Z) - Hyperparameter Estimation for Sparse Bayesian Learning Models [1.0172874946490507]
Aparse Bayesian Learning (SBL) モデルは、信号処理や機械学習において、階層的な事前処理による疎結合を促進するために広く使われている。
本稿では,種々の目的関数に対するSBLモデルの改良のためのフレームワークを提案する。
信号雑音比において, 高い効率性を示す新しいアルゴリズムが導入された。
論文 参考訳(メタデータ) (2024-01-04T21:24:01Z) - A Comparative Study of Deep Learning and Iterative Algorithms for Joint Channel Estimation and Signal Detection in OFDM Systems [11.190815358585137]
周波数分割多重化システムでは,共同チャネル推定と信号検出が重要である。
従来のアルゴリズムは低信号対雑音比(SNR)のシナリオでは不十分である。
深層学習 (DL) 手法は検討されているが, 計算コストや低SNR設定による検証の欠如が懸念されている。
論文 参考訳(メタデータ) (2023-03-07T06:34:04Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Sparsity-Aware Robust Normalized Subband Adaptive Filtering algorithms
based on Alternating Optimization [27.43948386608]
本稿では, 雑音下でのスパースシステムの同定のためのSA-RNSAFアルゴリズムを提案する。
提案したSA-RNSAFアルゴリズムは,ロバストな基準とスパース性を考慮したペナルティを定義することで,異なるアルゴリズムを一般化する。
論文 参考訳(メタデータ) (2022-05-15T03:38:13Z) - Study of Proximal Normalized Subband Adaptive Algorithm for Acoustic
Echo Cancellation [23.889870461547105]
スパースシナリオに適した正規化サブバンド適応フィルタを提案する。
提案アルゴリズムは, 近位前方分割法とソフトスレッショルド法に基づいて導出する。
シミュレーションによって支援されるアルゴリズムの平均および平均2乗挙動を解析する。
論文 参考訳(メタデータ) (2021-08-14T22:20:09Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
ランダムサンプリングではなく,ZO最適化における摂動を生成するためのサンプリングポリシを学習する,新たな強化学習ベースのZOアルゴリズムを提案する。
その結果,ZO-RLアルゴリズムはサンプリングポリシを学習することでZO勾配の分散を効果的に低減し,既存のZOアルゴリズムよりも高速に収束できることが示唆された。
論文 参考訳(メタデータ) (2021-04-09T14:50:59Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。