論文の概要: Parameter optimization comparison in QAOA using Stochastic Hill Climbing with Random Re-starts and Local Search with entangled and non-entangled mixing operators
- arxiv url: http://arxiv.org/abs/2405.08941v2
- Date: Wed, 16 Oct 2024 18:57:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 17:04:10.012237
- Title: Parameter optimization comparison in QAOA using Stochastic Hill Climbing with Random Re-starts and Local Search with entangled and non-entangled mixing operators
- Title(参考訳): 確率ヒルクライミングとランダム再スタートを用いたQAOAのパラメータ最適化比較と絡み合った非絡み合った混合演算子を用いた局所探索
- Authors: Brian García Sarmina, Guo-Hua Sun, Shi-Hai Dong,
- Abstract要約: 本研究では,Hill Climbing with Random Restarts (SHC-RR) の有効性を検討した。
以上の結果から,SHC-RRはLSアプローチよりも優れており,より単純な最適化機構にもかかわらず優れた有効性を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study investigates the efficacy of Stochastic Hill Climbing with Random Restarts (SHC-RR) compared to Local Search (LS) strategies within the Quantum Approximate Optimization Algorithm (QAOA) framework across various problem models. Employing uniform parameter settings, including the number of restarts and SHC steps, we analyze LS with two distinct perturbation operations: multiplication and summation. Our comparative analysis encompasses multiple versions of max-cut and random Ising model (RI) problems, utilizing QAOA models with depths ranging from $1L$ to $3L$. These models incorporate diverse mixing operator configurations, which integrate $RX$ and $RY$ gates, and explore the effects of an entanglement stage within the mixing operator. Our results consistently show that SHC-RR outperforms LS approaches, showcasing superior efficacy despite its ostensibly simpler optimization mechanism. Furthermore, we observe that the inclusion of entanglement stages within mixing operators significantly impacts model performance, either enhancing or diminishing results depending on the specific problem context.
- Abstract(参考訳): 本研究では,様々な問題モデルを対象とした量子近似最適化アルゴリズム (QAOA) における局所探索 (LS) 戦略と比較して,ランダム再起動 (SHC-RR) を用いた確率ヒルクライミングの有効性を検討した。
再起動回数とSHCステップを含む一様パラメータ設定を用いて、LSを2つの異なる摂動操作(乗法と和法)で解析する。
比較分析では,最大カットおよびランダムイジングモデル (RI) の複数のバージョンを含み,QAOAモデルの深さが1L$から3L$までである。
これらのモデルには様々な混合演算子構成が含まれており、これは$RX$と$RY$ゲートを統合し、混合演算子内の絡み合いのステージの影響を探索する。
以上の結果から,SHC-RRはLSアプローチよりも優れており,より単純な最適化機構にもかかわらず優れた有効性を示した。
さらに,混合演算子における絡み合い段階の包含が,特定の問題文脈による結果の増大や低下など,モデルの性能に大きく影響することが観察された。
関連論文リスト
- Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
半/ライブラリベースのアンミックスのための新しい凸凸モデルを提案する。
スパース・アンミキシングの代替手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-01-23T10:07:41Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
一般関数近似に基づく汎用マルコフゲーム(MG)のためのマルチエージェント強化学習(MARL)について検討した。
汎用MGに対するマルチエージェントデカップリング係数(MADC)と呼ばれる新しい複雑性尺度を導入する。
我々のアルゴリズムは既存の研究に匹敵するサブリニアな後悔を与えることを示す。
論文 参考訳(メタデータ) (2023-10-10T01:39:04Z) - High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise [96.80184504268593]
グラデーション、クリッピングは、優れた高確率保証を導き出すアルゴリズムの鍵となる要素の1つである。
クリッピングは、合成および分散最適化の一般的な方法の収束を損なう可能性がある。
論文 参考訳(メタデータ) (2023-10-03T07:49:17Z) - Adaptive SGD with Polyak stepsize and Line-search: Robust Convergence
and Variance Reduction [26.9632099249085]
AdaSPSとAdaSLSと呼ばれる2種類の新しいSPSとSLSを提案し、非補間条件における収束を保証する。
我々は, AdaSPS と AdaSLS に新しい分散低減技術を導入し, $smashwidetildemathcalO(n+1/epsilon)$グラデーション評価を必要とするアルゴリズムを得る。
論文 参考訳(メタデータ) (2023-08-11T10:17:29Z) - PCA and t-SNE analysis in the study of QAOA entangled and non-entangled
mixing operators [0.0]
我々はPCAとt-SNE分析を用いて、絡み合った混合作用素と非絡み合った混合作用素の挙動についてより深い知見を得る。
具体的には、QAOAモデルの$RZ$、$RX$、$RY$パラメータを深さ1L$、$2L$、$3L$で調べる。
その結果,PCA と t-SNE を用いて各実験セットの最終パラメータを処理した場合,特に 2L$ と 3L$ の絡み合った QAOA モデルでは,マッピングに保存できる情報量が増加する。
論文 参考訳(メタデータ) (2023-06-19T16:50:32Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Study of Robust Sparsity-Aware RLS algorithms with Jointly-Optimized
Parameters for Impulsive Noise Environments [0.0]
提案アルゴリズムは,ロバスト性およびスペーサ性を考慮したペナルティの特定の基準を置き換えることによって,複数のアルゴリズムを一般化する。
忘れ係数と空間的ペナルティパラメータを協調的に最適化することにより,共同最適化されたS-RRLS (JO-S-RRLS) アルゴリズムを開発した。
インパルスノイズシナリオのシミュレーションにより、提案したS-RRLSアルゴリズムとJO-S-RRLSアルゴリズムが既存の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-04-09T01:13:26Z) - Learning to Schedule Heuristics for the Simultaneous Stochastic
Optimization of Mining Complexes [2.538209532048867]
提案したL2P(Learning-to-perturb)ハイパーヒューリスティックは,マルチ隣り合うシミュレートアニールアルゴリズムである。
L2Pは、効率、堅牢性、一般化能力に重点を置いて、いくつかの実世界の鉱業施設で試験されている。
その結果,反復回数を30~50%削減し,計算時間を30~45%削減した。
論文 参考訳(メタデータ) (2022-02-25T18:20:14Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
雑音の緩和は、上界を導出する誤差まで行うことができる。
ノイズモデルとエラー軽減スキームの両方をテストするためにIBMのデバイスを使用した15(23)量子ビットの実験。
浅層深度ランダム回路によって生成されるHaar-random量子状態と状態に対して、同様の効果が期待できることを示す。
論文 参考訳(メタデータ) (2021-01-07T02:19:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。