論文の概要: PR-DAD: Phase Retrieval Using Deep Auto-Decoders
- arxiv url: http://arxiv.org/abs/2204.09051v1
- Date: Mon, 18 Apr 2022 21:20:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-22 04:24:48.258079
- Title: PR-DAD: Phase Retrieval Using Deep Auto-Decoders
- Title(参考訳): PR-DAD:ディープオートデコーダを用いた位相検索
- Authors: Leon Gugel and Shai Dekel
- Abstract要約: PR-DAD (Phase Retrieval Using Deep Auto-Decoders) は位相探索問題の数学的モデリングに基づく新しいアーキテクチャである。
アーキテクチャは、現在のすべての結果を上回る実験結果を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Phase retrieval is a well known ill-posed inverse problem where one tries to
recover images given only the magnitude values of their Fourier transform as
input. In recent years, new algorithms based on deep learning have been
proposed, providing breakthrough results that surpass the results of the
classical methods. In this work we provide a novel deep learning architecture
PR-DAD (Phase Retrieval Using Deep Auto- Decoders), whose components are
carefully designed based on mathematical modeling of the phase retrieval
problem. The architecture provides experimental results that surpass all
current results.
- Abstract(参考訳): 位相探索は、フーリエ変換の大きさの値のみを入力として画像の復元を試みる、よく知られた不測の逆問題である。
近年、ディープラーニングに基づく新しいアルゴリズムが提案され、古典的手法の成果を上回る画期的な結果が得られている。
本研究では,位相探索問題の数学的モデリングに基づいて,コンポーネントを慎重に設計した新しいディープラーニングアーキテクチャPR-DAD(Phase Retrieval using Deep Auto-Decoders)を提案する。
アーキテクチャは、現在のすべての結果を上回る実験結果を提供する。
関連論文リスト
- Depth Estimation Algorithm Based on Transformer-Encoder and Feature
Fusion [3.490784807576072]
この研究は、自然言語処理の成功で有名なトランスフォーマーモデルを採用し、深度推定タスクのための視覚データにおける複雑な空間関係をキャプチャする。
この研究の重要な革新は、構造類似度指標尺度(SSIM)と平均正方形誤差(MSE)を組み合わせた複合損失関数の統合である。
本研究は,MSEに基づく損失によく見られる過度な平滑化の課題に対処し,精度だけでなく,入力画像との整合性も維持する深度マップの予測能力を向上させる。
論文 参考訳(メタデータ) (2024-03-03T02:10:00Z) - SiPRNet: End-to-End Learning for Single-Shot Phase Retrieval [8.820823270160695]
畳み込みニューラルネットワーク(CNN)は、様々な画像再構成タスクにおいて重要な役割を果たしている。
本稿では,1つのフーリエ強度測定から信号を取得するために,SiPRNetという新しいCNN構造を設計する。
提案手法は、シングルショットマスクレス位相検索において、他のCNNおよび従来の最適化手法よりも一貫して優れている。
論文 参考訳(メタデータ) (2022-05-23T16:24:52Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
画像再構成に有効な先行画像として, 奥行き画像が導入された。
その印象的な再建性にもかかわらず、学習技術や伝統的な再建技術と比べてアプローチは遅い。
計算課題に対処する2段階の学習パラダイムを開発する。
論文 参考訳(メタデータ) (2021-11-23T15:08:26Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
本研究では,Convolutional Neural Networks(CNN)に基づく深層学習(DL)アルゴリズムを用いて,Sentinel-1データからスペックルノイズをフィルタリングする新しい手法を提案する。
得られた結果は、技術の現状と比較すると、ピーク信号対雑音比(PSNR)と構造類似度指数(SSIM)の点で明確な改善を示しています。
論文 参考訳(メタデータ) (2021-04-19T14:43:07Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
位相検索は現代の計算イメージングシステムにおいて重要な要素である。
近年のディープラーニングの進歩は、堅牢で高速なPRの新たな可能性を開いた。
我々は、既存の制限を克服するために、深層展開のための新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2021-01-12T08:36:23Z) - Unfolded Algorithms for Deep Phase Retrieval [16.14838937433809]
Unfolded Phase Retrieval (UPR) と呼ばれるハイブリッドモデルベースのデータ駆動型ディープアーキテクチャを提案する。
提案手法は,定評のあるモデルベースアルゴリズムの汎用性と解釈性が有効である。
センシングマトリクスと信号処理アルゴリズムの合同設計を考察し,そのプロセスにおける深い展開手法を応用した。
論文 参考訳(メタデータ) (2020-12-21T03:46:17Z) - DeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase
Retrieval [31.380061715549584]
本稿では、フーリエ位相探索のための新しい、教師なしフィードフォワードニューラルネットワークを提案する。
ニューラルネットワークを正規化用語や、教師付きトレーニングのためのエンドツーエンドのブラックボックスモデルとして使用している既存のディープラーニングアプローチとは異なり、我々のアルゴリズムは、教師なし学習フレームワークにおけるPhaseCutアルゴリズムのフィードフォワードニューラルネットワーク実装である。
我々のネットワークは2つの生成器で構成されている: 1つは位相損失を用いた位相推定用で、もう1つは画像再構成用で、これらは全て一致したデータを持たないCycleGANフレームワークを用いて同時に訓練されている。
論文 参考訳(メタデータ) (2020-11-20T16:10:08Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
本稿では,GANアーキテクチャ探索のための強化学習に基づくニューラルアーキテクチャ探索手法を提案する。
鍵となる考え方は、よりスムーズなアーキテクチャサンプリングのためのマルコフ決定プロセス(MDP)として、GANアーキテクチャ探索問題を定式化することである。
我々は,従来の政策によって生成されたサンプルを効率的に活用する,非政治的なGANアーキテクチャ探索アルゴリズムを利用する。
論文 参考訳(メタデータ) (2020-07-17T18:29:17Z) - UPR: A Model-Driven Architecture for Deep Phase Retrieval [14.433858410963717]
本稿では,ハイブリッドモデルに基づくデータ駆動型深層アーキテクチャ(Unfolded Phase Retrieval (UPR))を提案する。
具体的には、提案手法は、よく確立されたモデルベースアルゴリズムの汎用性と解釈可能性の恩恵を受けると同時に、深層ニューラルネットワークの表現力の恩恵を受ける。
このようなハイブリッドな深層構造の有効性を数値計算で示し、既存の位相探索アルゴリズムを強化するために、データ支援手法の未使用の可能性を示す。
論文 参考訳(メタデータ) (2020-03-09T20:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。