PR-DAD: Phase Retrieval Using Deep Auto-Decoders
- URL: http://arxiv.org/abs/2204.09051v1
- Date: Mon, 18 Apr 2022 21:20:01 GMT
- Title: PR-DAD: Phase Retrieval Using Deep Auto-Decoders
- Authors: Leon Gugel and Shai Dekel
- Abstract summary: PR-DAD (Phase Retrieval Using Deep Auto- Decoders) is a novel architecture based on mathematical modeling of the phase retrieval problem.
The architecture provides experimental results that surpass all current results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Phase retrieval is a well known ill-posed inverse problem where one tries to
recover images given only the magnitude values of their Fourier transform as
input. In recent years, new algorithms based on deep learning have been
proposed, providing breakthrough results that surpass the results of the
classical methods. In this work we provide a novel deep learning architecture
PR-DAD (Phase Retrieval Using Deep Auto- Decoders), whose components are
carefully designed based on mathematical modeling of the phase retrieval
problem. The architecture provides experimental results that surpass all
current results.
Related papers
- Depth Estimation Algorithm Based on Transformer-Encoder and Feature
Fusion [3.490784807576072]
This research adopts a transformer model, initially renowned for its success in natural language processing, to capture intricate spatial relationships in visual data for depth estimation tasks.
A significant innovation of the research is the integration of a composite loss function that combines Structural Similarity Index Measure (SSIM) with Mean Squared Error (MSE).
This research approach addresses the challenges of over-smoothing often seen in MSE-based losses and enhances the model's ability to predict depth maps that are not only accurate but also maintain structural coherence with the input images.
arXiv Detail & Related papers (2024-03-03T02:10:00Z) - SiPRNet: End-to-End Learning for Single-Shot Phase Retrieval [8.820823270160695]
convolutional neural networks (CNN) have played important roles in various image reconstruction tasks.
In this paper, we design a novel CNN structure, named SiPRNet, to recover a signal from a single Fourier intensity measurement.
The proposed approach consistently outperforms other CNN-based and traditional optimization-based methods in single-shot maskless phase retrieval.
arXiv Detail & Related papers (2022-05-23T16:24:52Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
This work aims to present a novel method for filtering the speckle noise from Sentinel-1 data by applying Deep Learning (DL) algorithms, based on Convolutional Neural Networks (CNNs)
The obtained results, if compared with the state of the art, show a clear improvement in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
arXiv Detail & Related papers (2021-04-19T14:43:07Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - Unfolded Algorithms for Deep Phase Retrieval [16.14838937433809]
We propose a hybrid model-based data-driven deep architecture, referred to as Unfolded Phase Retrieval (UPR)
The proposed method benefits from versatility and interpretability of well-established model-based algorithms.
We consider a joint design of the sensing matrix and the signal processing algorithm and utilize the deep unfolding technique in the process.
arXiv Detail & Related papers (2020-12-21T03:46:17Z) - DeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase
Retrieval [31.380061715549584]
We propose a novel, unsupervised, feed-forward neural network for Fourier phase retrieval.
Unlike the existing deep learning approaches that use a neural network as a regularization term or an end-to-end blackbox model for supervised training, our algorithm is a feed-forward neural network implementation of PhaseCut algorithm in an unsupervised learning framework.
Our network is composed of two generators: one for the phase estimation using PhaseCut loss, followed by another generator for image reconstruction, all of which are trained simultaneously using a cycleGAN framework without matched data.
arXiv Detail & Related papers (2020-11-20T16:10:08Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
We introduce a new reinforcement learning based neural architecture search (NAS) methodology for generative adversarial network (GAN) architecture search.
The key idea is to formulate the GAN architecture search problem as a Markov decision process (MDP) for smoother architecture sampling.
We exploit an off-policy GAN architecture search algorithm that makes efficient use of the samples generated by previous policies.
arXiv Detail & Related papers (2020-07-17T18:29:17Z) - UPR: A Model-Driven Architecture for Deep Phase Retrieval [14.433858410963717]
We propose a hybrid model-based data-driven deep architecture, referred to as the Unfolded Phase Retrieval (UPR)
Specifically, the proposed method benefits from versatility and interpretability of well established model-based algorithms, while simultaneously benefiting from the expressive power of deep neural networks.
Our numerical results illustrate the effectiveness of such hybrid deep architectures and showcase the untapped potential of data-aided methodologies to enhance the existing phase retrieval algorithms.
arXiv Detail & Related papers (2020-03-09T20:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.