Multi-Camera Multiple 3D Object Tracking on the Move for Autonomous
Vehicles
- URL: http://arxiv.org/abs/2204.09151v1
- Date: Tue, 19 Apr 2022 22:50:36 GMT
- Title: Multi-Camera Multiple 3D Object Tracking on the Move for Autonomous
Vehicles
- Authors: Pha Nguyen, Kha Gia Quach, Chi Nhan Duong, Ngan Le, Xuan-Bac Nguyen,
Khoa Luu
- Abstract summary: It is important for object detection and tracking to address new challenges, such as achieving consistent results across views of cameras.
This work presents a new Global Association Graph Model with Link Prediction approach to predict existing tracklets location and link detections with tracklets.
Our model exploits to improve the detection accuracy of a standard 3D object detector in the nuScenes detection challenge.
- Score: 17.12321292167318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of autonomous vehicles provides an opportunity to have a
complete set of camera sensors capturing the environment around the car. Thus,
it is important for object detection and tracking to address new challenges,
such as achieving consistent results across views of cameras. To address these
challenges, this work presents a new Global Association Graph Model with Link
Prediction approach to predict existing tracklets location and link detections
with tracklets via cross-attention motion modeling and appearance
re-identification. This approach aims at solving issues caused by inconsistent
3D object detection. Moreover, our model exploits to improve the detection
accuracy of a standard 3D object detector in the nuScenes detection challenge.
The experimental results on the nuScenes dataset demonstrate the benefits of
the proposed method to produce SOTA performance on the existing vision-based
tracking dataset.
Related papers
- Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
This research paper introduces a novel modification to an object detection network that uses camera and lidar information.
It incorporates an additional branch designed for the task of re-identifying objects across adjacent cameras within the same vehicle.
The results underscore the superiority of this method over traditional Non-Maximum Suppression (NMS) techniques.
arXiv Detail & Related papers (2023-10-09T15:16:35Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - Multi-Camera Multi-Object Tracking on the Move via Single-Stage Global
Association Approach [23.960847268459293]
This work introduces novel Single-Stage Global Association Tracking approaches to associate one or more detection from multi-cameras with tracked objects.
Our models also improve the detection accuracy of the standard vision-based 3D object detectors in the nuScenes detection challenge.
arXiv Detail & Related papers (2022-11-17T17:03:24Z) - TripletTrack: 3D Object Tracking using Triplet Embeddings and LSTM [0.0]
3D object tracking is a critical task in autonomous driving systems.
In this paper we investigate the use of triplet embeddings in combination with motion representations for 3D object tracking.
arXiv Detail & Related papers (2022-10-28T15:23:50Z) - 3D Object Detection for Autonomous Driving: A Comprehensive Survey [48.30753402458884]
3D object detection, which intelligently predicts the locations, sizes, and categories of the critical 3D objects near an autonomous vehicle, is an important part of a perception system.
This paper reviews the advances in 3D object detection for autonomous driving.
arXiv Detail & Related papers (2022-06-19T19:43:11Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
7DoF prediction of vehicles at an intersection is an important task for assessing potential conflicts between road users.
We develop an approach using a weakly supervised method of fine tuning 3D object detectors for traffic observation cameras.
Our method achieves vehicle 7DoF pose prediction accuracy on our dataset comparable to the top performing monocular 3D object detectors on autonomous vehicle datasets.
arXiv Detail & Related papers (2021-10-21T08:26:48Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - siaNMS: Non-Maximum Suppression with Siamese Networks for Multi-Camera
3D Object Detection [65.03384167873564]
A siamese network is integrated into the pipeline of a well-known 3D object detector approach.
associations are exploited to enhance the 3D box regression of the object.
The experimental evaluation on the nuScenes dataset shows that the proposed method outperforms traditional NMS approaches.
arXiv Detail & Related papers (2020-02-19T15:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.