Multi-Camera Multi-Object Tracking on the Move via Single-Stage Global
Association Approach
- URL: http://arxiv.org/abs/2211.09663v1
- Date: Thu, 17 Nov 2022 17:03:24 GMT
- Title: Multi-Camera Multi-Object Tracking on the Move via Single-Stage Global
Association Approach
- Authors: Pha Nguyen, Kha Gia Quach, Chi Nhan Duong, Son Lam Phung, Ngan Le,
Khoa Luu
- Abstract summary: This work introduces novel Single-Stage Global Association Tracking approaches to associate one or more detection from multi-cameras with tracked objects.
Our models also improve the detection accuracy of the standard vision-based 3D object detectors in the nuScenes detection challenge.
- Score: 23.960847268459293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of autonomous vehicles generates a tremendous demand for a
low-cost solution with a complete set of camera sensors capturing the
environment around the car. It is essential for object detection and tracking
to address these new challenges in multi-camera settings. In order to address
these challenges, this work introduces novel Single-Stage Global Association
Tracking approaches to associate one or more detection from multi-cameras with
tracked objects. These approaches aim to solve fragment-tracking issues caused
by inconsistent 3D object detection. Moreover, our models also improve the
detection accuracy of the standard vision-based 3D object detectors in the
nuScenes detection challenge. The experimental results on the nuScenes dataset
demonstrate the benefits of the proposed method by outperforming prior
vision-based tracking methods in multi-camera settings.
Related papers
- MCTR: Multi Camera Tracking Transformer [45.66952089591361]
Multi-Camera Tracking tRansformer (MCTR) is a novel end-to-end approach tailored for multi-object detection and tracking across multiple cameras.
MCTR leverages end-to-end detectors like DEtector TRansformer (DETR) to produce detections and detection embeddings independently for each camera view.
The framework maintains set of track embeddings that encaplusate global information about the tracked objects, and updates them at every frame by integrating local information from the view-specific detection embeddings.
arXiv Detail & Related papers (2024-08-23T17:37:03Z) - VirtualPainting: Addressing Sparsity with Virtual Points and
Distance-Aware Data Augmentation for 3D Object Detection [3.5259183508202976]
We present an innovative approach that involves the generation of virtual LiDAR points using camera images.
We also enhance these virtual points with semantic labels obtained from image-based segmentation networks.
Our approach offers a versatile solution that can be seamlessly integrated into various 3D frameworks and 2D semantic segmentation methods.
arXiv Detail & Related papers (2023-12-26T18:03:05Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
This research paper introduces a novel modification to an object detection network that uses camera and lidar information.
It incorporates an additional branch designed for the task of re-identifying objects across adjacent cameras within the same vehicle.
The results underscore the superiority of this method over traditional Non-Maximum Suppression (NMS) techniques.
arXiv Detail & Related papers (2023-10-09T15:16:35Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
3D object detection with surrounding cameras has been a promising direction for autonomous driving.
We present SimMOD, a Simple baseline for Multi-camera Object Detection.
We conduct extensive experiments on the 3D object detection benchmark of nuScenes to demonstrate the effectiveness of SimMOD.
arXiv Detail & Related papers (2022-08-22T03:38:01Z) - Multi-Camera Multiple 3D Object Tracking on the Move for Autonomous
Vehicles [17.12321292167318]
It is important for object detection and tracking to address new challenges, such as achieving consistent results across views of cameras.
This work presents a new Global Association Graph Model with Link Prediction approach to predict existing tracklets location and link detections with tracklets.
Our model exploits to improve the detection accuracy of a standard 3D object detector in the nuScenes detection challenge.
arXiv Detail & Related papers (2022-04-19T22:50:36Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
We propose a MultiModality PAnoramic multi-object Tracking framework (MMPAT)
It takes both 2D panorama images and 3D point clouds as input and then infers target trajectories using the multimodality data.
We evaluate the proposed method on the JRDB dataset, where the MMPAT achieves the top performance in both the detection and tracking tasks.
arXiv Detail & Related papers (2021-05-31T03:16:38Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
We propose a multi-camera framework in which geometric constraints are embedded in the form of multi-view consistency during training.
We show that our approach outperforms state-of-the-art self-supervised person detection and segmentation techniques on images that visually depart from those of standard benchmarks.
arXiv Detail & Related papers (2020-12-09T15:47:21Z) - siaNMS: Non-Maximum Suppression with Siamese Networks for Multi-Camera
3D Object Detection [65.03384167873564]
A siamese network is integrated into the pipeline of a well-known 3D object detector approach.
associations are exploited to enhance the 3D box regression of the object.
The experimental evaluation on the nuScenes dataset shows that the proposed method outperforms traditional NMS approaches.
arXiv Detail & Related papers (2020-02-19T15:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.