Joint object detection and re-identification for 3D obstacle
multi-camera systems
- URL: http://arxiv.org/abs/2310.05785v1
- Date: Mon, 9 Oct 2023 15:16:35 GMT
- Title: Joint object detection and re-identification for 3D obstacle
multi-camera systems
- Authors: Irene Cort\'es, Jorge Beltr\'an, Arturo de la Escalera, Fernando
Garc\'ia
- Abstract summary: This research paper introduces a novel modification to an object detection network that uses camera and lidar information.
It incorporates an additional branch designed for the task of re-identifying objects across adjacent cameras within the same vehicle.
The results underscore the superiority of this method over traditional Non-Maximum Suppression (NMS) techniques.
- Score: 47.87501281561605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the field of autonomous driving has witnessed remarkable
advancements, driven by the integration of a multitude of sensors, including
cameras and LiDAR systems, in different prototypes. However, with the
proliferation of sensor data comes the pressing need for more sophisticated
information processing techniques. This research paper introduces a novel
modification to an object detection network that uses camera and lidar
information, incorporating an additional branch designed for the task of
re-identifying objects across adjacent cameras within the same vehicle while
elevating the quality of the baseline 3D object detection outcomes. The
proposed methodology employs a two-step detection pipeline: initially, an
object detection network is employed, followed by a 3D box estimator that
operates on the filtered point cloud generated from the network's detections.
Extensive experimental evaluations encompassing both 2D and 3D domains validate
the effectiveness of the proposed approach and the results underscore the
superiority of this method over traditional Non-Maximum Suppression (NMS)
techniques, with an improvement of more than 5\% in the car category in the
overlapping areas.
Related papers
- Cross-Domain Spatial Matching for Camera and Radar Sensor Data Fusion in Autonomous Vehicle Perception System [0.0]
We propose a novel approach to address the problem of camera and radar sensor fusion for 3D object detection in autonomous vehicle perception systems.
Our approach builds on recent advances in deep learning and leverages the strengths of both sensors to improve object detection performance.
Our results show that the proposed approach achieves superior performance over single-sensor solutions and could directly compete with other top-level fusion methods.
arXiv Detail & Related papers (2024-04-25T12:04:31Z) - Run-time Monitoring of 3D Object Detection in Automated Driving Systems Using Early Layer Neural Activation Patterns [12.384452095533396]
Integrity monitoring of automated driving systems (ADS) is paramount for ensuring safety.
Recent advancements in deep neural network (DNN)-based object detectors, their susceptibility to detection errors remains a significant concern.
arXiv Detail & Related papers (2024-04-11T12:24:47Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - Domain Generalization of 3D Object Detection by Density-Resampling [14.510085711178217]
Point-cloud-based 3D object detection suffers from performance degradation when encountering data with novel domain gaps.
We propose an SDG method to improve the generalizability of 3D object detection to unseen target domains.
Our work introduces a novel data augmentation method and contributes a new multi-task learning strategy in the methodology.
arXiv Detail & Related papers (2023-11-17T20:01:29Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
3D object detection with surround-view images is an essential task for autonomous driving.
We propose DETR4D, a Transformer-based framework that explores sparse attention and direct feature query for 3D object detection in multi-view images.
arXiv Detail & Related papers (2022-12-15T14:18:47Z) - Multi-Camera Multi-Object Tracking on the Move via Single-Stage Global
Association Approach [23.960847268459293]
This work introduces novel Single-Stage Global Association Tracking approaches to associate one or more detection from multi-cameras with tracked objects.
Our models also improve the detection accuracy of the standard vision-based 3D object detectors in the nuScenes detection challenge.
arXiv Detail & Related papers (2022-11-17T17:03:24Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - siaNMS: Non-Maximum Suppression with Siamese Networks for Multi-Camera
3D Object Detection [65.03384167873564]
A siamese network is integrated into the pipeline of a well-known 3D object detector approach.
associations are exploited to enhance the 3D box regression of the object.
The experimental evaluation on the nuScenes dataset shows that the proposed method outperforms traditional NMS approaches.
arXiv Detail & Related papers (2020-02-19T15:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.