Scalable Motif Counting for Large-scale Temporal Graphs
- URL: http://arxiv.org/abs/2204.09236v1
- Date: Wed, 20 Apr 2022 05:41:38 GMT
- Title: Scalable Motif Counting for Large-scale Temporal Graphs
- Authors: Zhongqiang Gao, Chuanqi Cheng, Yanwei Yu, Lei Cao, Chao Huang, Junyu
Dong
- Abstract summary: We propose a scalable parallel framework for exactly counting temporal motifs in large-scale temporal graphs.
Based on the proposed counting algorithms, we design a hierarchical parallel framework that features both inter- and intra-node parallel strategies.
Experiments on sixteen real-world temporal graph datasets demonstrate the superiority and capability of our proposed framework.
- Score: 25.90869257290865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One fundamental problem in temporal graph analysis is to count the
occurrences of small connected subgraph patterns (i.e., motifs), which benefits
a broad range of real-world applications, such as anomaly detection, structure
prediction, and network representation learning. However, existing works
focused on exacting temporal motif are not scalable to large-scale temporal
graph data, due to their heavy computational costs or inherent inadequacy of
parallelism. In this work, we propose a scalable parallel framework for exactly
counting temporal motifs in large-scale temporal graphs. We first categorize
the temporal motifs based on their distinct properties, and then design
customized algorithms that offer efficient strategies to exactly count the
motif instances of each category. Moreover, our compact data structures, namely
triple and quadruple counters, enable our algorithms to directly identify the
temporal motif instances of each category, according to edge information and
the relationship between edges, therefore significantly improving the counting
efficiency. Based on the proposed counting algorithms, we design a hierarchical
parallel framework that features both inter- and intra-node parallel
strategies, and fully leverages the multi-threading capacity of modern CPU to
concurrently count all temporal motifs. Extensive experiments on sixteen
real-world temporal graph datasets demonstrate the superiority and capability
of our proposed framework for temporal motif counting, achieving up to 538*
speedup compared to the state-of-the-art methods. The source code of our method
is available at: https://github.com/steven-ccq/FAST-temporal-motif.
Related papers
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - From random-walks to graph-sprints: a low-latency node embedding
framework on continuous-time dynamic graphs [4.372841335228306]
We propose a framework for continuous-time-dynamic-graphs (CTDGs) that has low latency and is competitive with state-of-the-art, higher latency models.
In our framework, time-aware node embeddings summarizing multi-hop information are computed using only single-hop operations on the incoming edges.
We demonstrate that our graph-sprints features, combined with a machine learning, achieve competitive performance.
arXiv Detail & Related papers (2023-07-17T12:25:52Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Self-Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment [53.72873672076391]
Temporal graph learning aims to generate high-quality representations for graph-based tasks with dynamic information.
We propose a self-supervised method called S2T for temporal graph learning, which extracts both temporal and structural information.
S2T achieves at most 10.13% performance improvement compared with the state-of-the-art competitors on several datasets.
arXiv Detail & Related papers (2023-02-15T06:36:04Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
Methods for machine learning on temporal networks generally exhibit at least one of two limitations.
We present a simple method that avoids both shortcomings: construct the line graph of the network, which includes a node for each interaction, and weigh the edges of this graph based on the difference in time between interactions.
Empirical results on real-world networks demonstrate our method's efficacy and efficiency on both edge classification and temporal link prediction.
arXiv Detail & Related papers (2022-09-30T18:24:13Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
Graph neural networks (GNNs) are often the core component of the forecasting architecture.
In most pretemporal GNNs, the computational complexity scales up to a quadratic factor with the length of the sequence times the number of links in the graph.
We propose a scalable architecture that exploits an efficient encoding of both temporal and spatial dynamics.
arXiv Detail & Related papers (2022-09-14T09:47:38Z) - From Static to Dynamic Node Embeddings [61.58641072424504]
We introduce a general framework for leveraging graph stream data for temporal prediction-based applications.
Our proposed framework includes novel methods for learning an appropriate graph time-series representation.
We find that the top-3 temporal models are always those that leverage the new $epsilon$-graph time-series representation.
arXiv Detail & Related papers (2020-09-21T16:48:29Z) - Efficient Sampling Algorithms for Approximate Temporal Motif Counting
(Extended Version) [24.33313864327473]
We propose a generic edge sampling (ES) algorithm for estimating the number of instances of any temporal motif.
We also devise an improved EWS algorithm that hybridizes edge sampling with wedge sampling for counting temporal motifs with 3 vertices and 3 edges.
Our algorithms have higher efficiency, better accuracy, and greater scalability than the state-of-the-art sampling method for temporal motif counting.
arXiv Detail & Related papers (2020-07-28T07:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.