論文の概要: Effects of Graph Convolutions in Deep Networks
- arxiv url: http://arxiv.org/abs/2204.09297v1
- Date: Wed, 20 Apr 2022 08:24:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-21 13:47:44.578444
- Title: Effects of Graph Convolutions in Deep Networks
- Title(参考訳): ディープネットワークにおけるグラフ畳み込みの効果
- Authors: Aseem Baranwal, Kimon Fountoulakis, Aukosh Jagannath
- Abstract要約: 多層ネットワークにおけるグラフ畳み込みの効果に関する厳密な理論的理解を示す。
単一のグラフ畳み込みは、多層ネットワークがデータを分類できる手段間の距離のレギュレーションを拡大することを示す。
ネットワーク層間の異なる組み合わせに配置されたグラフ畳み込みの性能に関する理論的および実証的な知見を提供する。
- 参考スコア(独自算出の注目度): 8.937905773981702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) are one of the most popular architectures
that are used to solve classification problems accompanied by graphical
information. We present a rigorous theoretical understanding of the effects of
graph convolutions in multi-layer networks. We study these effects through the
node classification problem of a non-linearly separable Gaussian mixture model
coupled with a stochastic block model. First, we show that a single graph
convolution expands the regime of the distance between the means where
multi-layer networks can classify the data by a factor of at least
$1/\sqrt[4]{\mathbb{E}{\rm deg}}$, where $\mathbb{E}{\rm deg}$ denotes the
expected degree of a node. Second, we show that with a slightly stronger graph
density, two graph convolutions improve this factor to at least
$1/\sqrt[4]{n}$, where $n$ is the number of nodes in the graph. Finally, we
provide both theoretical and empirical insights into the performance of graph
convolutions placed in different combinations among the layers of a network,
concluding that the performance is mutually similar for all combinations of the
placement. We present extensive experiments on both synthetic and real-world
data that illustrate our results.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、グラフィカル情報を伴う分類問題の解決に使用される最も一般的なアーキテクチャの1つである。
多層ネットワークにおけるグラフ畳み込みの効果に関する厳密な理論的理解を示す。
確率ブロックモデルと非線形分離可能なガウス混合モデルのノード分類問題を通じて,これらの効果について検討する。
まず、単一グラフ畳み込みは、複数の層ネットワークがデータを少なくとも1/\sqrt[4]{\mathbb{e}{\rm deg}}$の係数で分類できる手段の間の距離の配置を広げることを示す。
第二に、グラフ密度がわずかに強くなると、2つのグラフ畳み込みがこの因子を少なくとも1/\sqrt[4]{n}$に改善する。
最後に,ネットワーク層間の異なる組み合わせに配置されたグラフ畳み込みの性能に関する理論的および実証的な知見を提供し,その性能は配置のすべての組み合わせと相互に類似していると結論付けた。
結果を示す合成データと実世界のデータの両方について広範な実験を行った。
関連論文リスト
- Learning to Approximate Adaptive Kernel Convolution on Graphs [4.434835769977399]
本稿では,拡散カーネルのスケールによって特徴集約の範囲を制御できる拡散学習フレームワークを提案する。
本モデルは,最先端データセットの性能評価のためのノードワイズ分類のための様々な標準で検証されている。
グラフ分類のための実世界の脳ネットワークデータにも検証され、アルツハイマー分類の実用性を実証している。
論文 参考訳(メタデータ) (2024-01-22T10:57:11Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Factorizable Graph Convolutional Networks [90.59836684458905]
本稿では,グラフに符号化された相互に絡み合った関係を明示的に解消する新しいグラフ畳み込みネットワーク(GCN)を提案する。
FactorGCNは単純なグラフを入力として取り、それをいくつかの分解グラフに分解する。
提案したFacterGCNは,合成および実世界のデータセットに対して質的かつ定量的に評価する。
論文 参考訳(メタデータ) (2020-10-12T03:01:40Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Unsupervised Graph Representation by Periphery and Hierarchical
Information Maximization [18.7475578342125]
グラフニューラルネットワークの発明により、ベクトル空間におけるノードとグラフ全体の表現の最先端性が向上した。
グラフ表現全体について、既存のグラフニューラルネットワークの大部分は、教師付き方法でグラフ分類損失に基づいてトレーニングされている。
本稿では,グラフ全体のベクトル表現を生成するための教師なしグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-06-08T15:50:40Z) - Graph Representation Learning Network via Adaptive Sampling [4.996520403438455]
Graph Attention Network(GAT)とGraphSAGEは、グラフ構造化データを操作するニューラルネットワークアーキテクチャである。
GraphSAGEが提起した課題のひとつは、グラフ構造に基づいた隣の機能をスマートに組み合わせる方法だ。
より効率的で,異なるエッジ型情報を組み込むことが可能な,これらの問題に対処する新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-06-08T14:36:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。