Sequential Point Clouds: A Survey
- URL: http://arxiv.org/abs/2204.09337v2
- Date: Thu, 21 Apr 2022 02:10:05 GMT
- Title: Sequential Point Clouds: A Survey
- Authors: Haiyan Wang, Yingli Tian
- Abstract summary: This paper presents an extensive review of the deep learning-based methods for sequential point cloud research.
It includes dynamic flow estimation, object detection & tracking, point cloud segmentation, and point cloud forecasting.
- Score: 33.20866441256135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud has drawn more and more research attention as well as real-world
applications. However, many of these applications (e.g. autonomous driving and
robotic manipulation) are actually based on sequential point clouds (i.e. four
dimensions) because the information of the static point cloud data could
provide is still limited. Recently, researchers put more and more effort into
sequential point clouds. This paper presents an extensive review of the deep
learning-based methods for sequential point cloud research including dynamic
flow estimation, object detection \& tracking, point cloud segmentation, and
point cloud forecasting. This paper further summarizes and compares the
quantitative results of the reviewed methods over the public benchmark
datasets. Finally, this paper is concluded by discussing the challenges in the
current sequential point cloud research and pointing out insightful potential
future research directions.
Related papers
- Deep Learning for 3D Point Cloud Enhancement: A Survey [7.482216242644069]
This paper presents a comprehensive survey for deep-learning-based point cloud enhancement methods.
It covers three main perspectives for point cloud enhancement, i.e., denoising to achieve clean data, completion to recover unseen data, and upsampling to obtain dense data.
Our survey presents a new taxonomy for recent state-of-the-art methods and systematic experimental results on standard benchmarks.
arXiv Detail & Related papers (2024-10-30T15:07:06Z) - Deep Learning-based 3D Point Cloud Classification: A Systematic Survey
and Outlook [12.014972829130764]
This paper introduces point cloud acquisition, characteristics, and challenges.
We review 3D data representations, storage formats, and commonly used datasets for point cloud classification.
arXiv Detail & Related papers (2023-11-05T09:28:43Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
This paper presents the first comprehensive survey of label-efficient learning of point clouds.
We propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels.
For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges.
arXiv Detail & Related papers (2023-05-31T12:54:51Z) - Self-supervised Learning for Pre-Training 3D Point Clouds: A Survey [25.51613543480276]
Self-supervised point cloud representation learning has attracted increasing attention in recent years.
This paper presents a comprehensive survey of self-supervised point cloud representation learning using DNNs.
arXiv Detail & Related papers (2023-05-08T13:20:55Z) - PointCaM: Cut-and-Mix for Open-Set Point Cloud Learning [72.07350827773442]
We propose to solve open-set point cloud learning using a novel Point Cut-and-Mix mechanism.
We use the Unknown-Point Simulator to simulate out-of-distribution data in the training stage.
The Unknown-Point Estimator module learns to exploit the point cloud's feature context for discriminating the known and unknown data.
arXiv Detail & Related papers (2022-12-05T03:53:51Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion
Processing and Analysis [14.203228394483117]
This work aims to conduct a comprehensive survey on various methods, including point-based, convolution-based, graph-based, and generative model-based approaches.
This review sums up the commonly used datasets and illustrates the applications of point cloud completion.
arXiv Detail & Related papers (2022-03-07T11:47:14Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
Unsupervised point cloud representation learning has attracted increasing attention due to the constraint in large-scale point cloud labelling.
This paper provides a comprehensive review of unsupervised point cloud representation learning using deep neural networks.
arXiv Detail & Related papers (2022-02-28T07:46:05Z) - PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [81.71904691925428]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We also design a new model, called PoinTr, that adopts a transformer encoder-decoder architecture for point cloud completion.
Our method outperforms state-of-the-art methods by a large margin on both the new benchmarks and the existing ones.
arXiv Detail & Related papers (2021-08-19T17:58:56Z) - Deep Learning for 3D Point Clouds: A Survey [58.954684611055]
This paper presents a review of recent progress in deep learning methods for point clouds.
It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation.
It also presents comparative results on several publicly available datasets.
arXiv Detail & Related papers (2019-12-27T09:15:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.