Deep Learning for 3D Point Cloud Enhancement: A Survey
- URL: http://arxiv.org/abs/2411.00857v1
- Date: Wed, 30 Oct 2024 15:07:06 GMT
- Title: Deep Learning for 3D Point Cloud Enhancement: A Survey
- Authors: Siwen Quan, Junhao Yu, Ziming Nie, Muze Wang, Sijia Feng, Pei An, Jiaqi Yang,
- Abstract summary: This paper presents a comprehensive survey for deep-learning-based point cloud enhancement methods.
It covers three main perspectives for point cloud enhancement, i.e., denoising to achieve clean data, completion to recover unseen data, and upsampling to obtain dense data.
Our survey presents a new taxonomy for recent state-of-the-art methods and systematic experimental results on standard benchmarks.
- Score: 7.482216242644069
- License:
- Abstract: Point cloud data now are popular data representations in a number of three-dimensional (3D) vision research realms. However, due to the limited performance of sensors and sensing noise, the raw data usually suffer from sparsity, noise, and incompleteness. This poses great challenges to down-stream point cloud processing tasks. In recent years, deep-learning-based point cloud enhancement methods, which aim to achieve dense, clean, and complete point clouds from low-quality raw point clouds using deep neural networks, are gaining tremendous research attention. This paper, for the first time to our knowledge, presents a comprehensive survey for deep-learning-based point cloud enhancement methods. It covers three main perspectives for point cloud enhancement, i.e., (1) denoising to achieve clean data; (2) completion to recover unseen data; (3) upsampling to obtain dense data. Our survey presents a new taxonomy for recent state-of-the-art methods and systematic experimental results on standard benchmarks. In addition, we share our insightful observations, thoughts, and inspiring future research directions for point cloud enhancement with deep learning.
Related papers
- PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training [90.06520673092702]
We present PointRegGPT, boosting 3D point cloud registration using generative point-cloud pairs for training.
To our knowledge, this is the first generative approach that explores realistic data generation for indoor point cloud registration.
arXiv Detail & Related papers (2024-07-19T06:29:57Z) - Test-Time Augmentation for 3D Point Cloud Classification and
Segmentation [40.62640761825697]
Data augmentation is a powerful technique to enhance the performance of a deep learning task.
This work explores test-time augmentation (TTA) for 3D point clouds.
arXiv Detail & Related papers (2023-11-22T04:31:09Z) - Deep Learning-based 3D Point Cloud Classification: A Systematic Survey
and Outlook [12.014972829130764]
This paper introduces point cloud acquisition, characteristics, and challenges.
We review 3D data representations, storage formats, and commonly used datasets for point cloud classification.
arXiv Detail & Related papers (2023-11-05T09:28:43Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
This paper presents the first comprehensive survey of label-efficient learning of point clouds.
We propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels.
For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges.
arXiv Detail & Related papers (2023-05-31T12:54:51Z) - Point2Vec for Self-Supervised Representation Learning on Point Clouds [66.53955515020053]
We extend data2vec to the point cloud domain and report encouraging results on several downstream tasks.
We propose point2vec, which unleashes the full potential of data2vec-like pre-training on point clouds.
arXiv Detail & Related papers (2023-03-29T10:08:29Z) - Sequential Point Clouds: A Survey [33.20866441256135]
This paper presents an extensive review of the deep learning-based methods for sequential point cloud research.
It includes dynamic flow estimation, object detection & tracking, point cloud segmentation, and point cloud forecasting.
arXiv Detail & Related papers (2022-04-20T09:14:20Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
Unsupervised point cloud representation learning has attracted increasing attention due to the constraint in large-scale point cloud labelling.
This paper provides a comprehensive review of unsupervised point cloud representation learning using deep neural networks.
arXiv Detail & Related papers (2022-02-28T07:46:05Z) - Review: deep learning on 3D point clouds [9.73176900969663]
Point cloud is one of the most significant data formats for 3D representation.
Deep learning is now the most powerful tool for data processing in computer vision.
arXiv Detail & Related papers (2020-01-17T12:55:23Z) - Deep Learning for 3D Point Clouds: A Survey [58.954684611055]
This paper presents a review of recent progress in deep learning methods for point clouds.
It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation.
It also presents comparative results on several publicly available datasets.
arXiv Detail & Related papers (2019-12-27T09:15:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.