OutCast: Outdoor Single-image Relighting with Cast Shadows
- URL: http://arxiv.org/abs/2204.09341v1
- Date: Wed, 20 Apr 2022 09:24:14 GMT
- Title: OutCast: Outdoor Single-image Relighting with Cast Shadows
- Authors: David Griffiths, Tobias Ritschel, Julien Philip
- Abstract summary: We propose a relighting method for outdoor images.
Our method mainly focuses on predicting cast shadows in arbitrary novel lighting directions from a single image.
Our proposed method achieves, for the first time, state-of-the-art relighting results, with only a single image as input.
- Score: 19.354412901507175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a relighting method for outdoor images. Our method mainly focuses
on predicting cast shadows in arbitrary novel lighting directions from a single
image while also accounting for shading and global effects such the sun light
color and clouds. Previous solutions for this problem rely on reconstructing
occluder geometry, e.g. using multi-view stereo, which requires many images of
the scene. Instead, in this work we make use of a noisy off-the-shelf
single-image depth map estimation as a source of geometry. Whilst this can be a
good guide for some lighting effects, the resulting depth map quality is
insufficient for directly ray-tracing the shadows. Addressing this, we propose
a learned image space ray-marching layer that converts the approximate depth
map into a deep 3D representation that is fused into occlusion queries using a
learned traversal. Our proposed method achieves, for the first time,
state-of-the-art relighting results, with only a single image as input. For
supplementary material visit our project page at:
https://dgriffiths.uk/outcast.
Related papers
- IllumiNeRF: 3D Relighting Without Inverse Rendering [25.642960820693947]
We show how to relight each input image using an image diffusion model conditioned on target environment lighting and estimated object geometry.
We reconstruct a Neural Radiance Field (NeRF) with these relit images, from which we render novel views under the target lighting.
We demonstrate that this strategy is surprisingly competitive and achieves state-of-the-art results on multiple relighting benchmarks.
arXiv Detail & Related papers (2024-06-10T17:59:59Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - Designing An Illumination-Aware Network for Deep Image Relighting [69.750906769976]
We present an Illumination-Aware Network (IAN) which follows the guidance from hierarchical sampling to progressively relight a scene from a single image.
In addition, an Illumination-Aware Residual Block (IARB) is designed to approximate the physical rendering process.
Experimental results show that our proposed method produces better quantitative and qualitative relighting results than previous state-of-the-art methods.
arXiv Detail & Related papers (2022-07-21T16:21:24Z) - Geometry-aware Single-image Full-body Human Relighting [37.381122678376805]
Single-image human relighting aims to relight a target human under new lighting conditions by decomposing the input image into albedo, shape and lighting.
Previous methods suffer from both the entanglement between albedo and lighting and the lack of hard shadows.
Our framework is able to generate photo-realistic high-frequency shadows such as cast shadows under challenging lighting conditions.
arXiv Detail & Related papers (2022-07-11T10:21:02Z) - Physically-Based Editing of Indoor Scene Lighting from a Single Image [106.60252793395104]
We present a method to edit complex indoor lighting from a single image with its predicted depth and light source segmentation masks.
We tackle this problem using two novel components: 1) a holistic scene reconstruction method that estimates scene reflectance and parametric 3D lighting, and 2) a neural rendering framework that re-renders the scene from our predictions.
arXiv Detail & Related papers (2022-05-19T06:44:37Z) - DeepShadow: Neural Shape from Shadow [12.283891012446647]
DeepShadow is a one-shot method for recovering the depth map and surface normals from photometric stereo shadow maps.
We show that the self and cast shadows not only do not disturb 3D reconstruction, but can be used alone, as a strong learning signal.
Our method is the first to reconstruct 3D shape-from-shadows using neural networks.
arXiv Detail & Related papers (2022-03-28T20:11:15Z) - Self-supervised Outdoor Scene Relighting [92.20785788740407]
We propose a self-supervised approach for relighting.
Our approach is trained only on corpora of images collected from the internet without any user-supervision.
Results show the ability of our technique to produce photo-realistic and physically plausible results, that generalizes to unseen scenes.
arXiv Detail & Related papers (2021-07-07T09:46:19Z) - Relighting Images in the Wild with a Self-Supervised Siamese
Auto-Encoder [62.580345486483886]
We propose a self-supervised method for image relighting of single view images in the wild.
The method is based on an auto-encoder which deconstructs an image into two separate encodings.
We train our model on large-scale datasets such as Youtube 8M and CelebA.
arXiv Detail & Related papers (2020-12-11T16:08:50Z) - Towards Geometry Guided Neural Relighting with Flash Photography [26.511476565209026]
We propose a framework for image relighting from a single flash photograph with its corresponding depth map using deep learning.
We experimentally validate the advantage of our geometry guided approach over state-of-the-art image-based approaches in intrinsic image decomposition and image relighting.
arXiv Detail & Related papers (2020-08-12T08:03:28Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.