論文の概要: Special Session: Towards an Agile Design Methodology for Efficient,
Reliable, and Secure ML Systems
- arxiv url: http://arxiv.org/abs/2204.09514v1
- Date: Mon, 18 Apr 2022 17:29:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-21 14:17:37.758439
- Title: Special Session: Towards an Agile Design Methodology for Efficient,
Reliable, and Secure ML Systems
- Title(参考訳): 特別セッション:効率的な信頼性とセキュアなMLシステムのためのアジャイルデザイン方法論を目指して
- Authors: Shail Dave, Alberto Marchisio, Muhammad Abdullah Hanif, Amira Guesmi,
Aviral Shrivastava, Ihsen Alouani, Muhammad Shafique
- Abstract要約: 現代の機械学習システムは、ハードウェア障害に対する高い信頼性と、敵やIP盗難攻撃に対する安全性が期待されている。
プライバシーに関する懸念も一段落している。
この記事では、効率的で信頼性があり、セキュアなMLシステムのアジャイル開発における主な課題を要約する。
- 参考スコア(独自算出の注目度): 12.53463551929214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The real-world use cases of Machine Learning (ML) have exploded over the past
few years. However, the current computing infrastructure is insufficient to
support all real-world applications and scenarios. Apart from high efficiency
requirements, modern ML systems are expected to be highly reliable against
hardware failures as well as secure against adversarial and IP stealing
attacks. Privacy concerns are also becoming a first-order issue. This article
summarizes the main challenges in agile development of efficient, reliable and
secure ML systems, and then presents an outline of an agile design methodology
to generate efficient, reliable and secure ML systems based on user-defined
constraints and objectives.
- Abstract(参考訳): 機械学習(ML)の現実のユースケースはここ数年で爆発的に増えている。
しかし、現在のコンピューティングインフラストラクチャは、すべての現実世界のアプリケーションやシナリオをサポートするには不十分である。
高効率の要求とは別に、現代のMLシステムは、ハードウェア障害に対する高い信頼性と、敵やIP盗難攻撃に対する安全性が期待されている。
プライバシーに関する懸念も一段落している。
この記事では,効率的で信頼性が高く,セキュアなMLシステムのアジャイル開発における主な課題を要約し,ユーザ定義の制約と目的に基づいて,効率的で信頼性の高い,セキュアなMLシステムを生成するアジャイル設計方法論の概要を紹介する。
関連論文リスト
- Can We Trust Embodied Agents? Exploring Backdoor Attacks against Embodied LLM-based Decision-Making Systems [27.316115171846953]
大規模言語モデル(LLM)は、実世界のAI意思決定タスクにおいて大きな可能性を示している。
LLMは、固有の常識と推論能力を活用するために微調整され、特定の用途に適合する。
この微調整プロセスは、特に安全クリティカルなサイバー物理システムにおいて、かなりの安全性とセキュリティの脆弱性をもたらす。
論文 参考訳(メタデータ) (2024-05-27T17:59:43Z) - Highlighting the Safety Concerns of Deploying LLMs/VLMs in Robotics [54.57914943017522]
本稿では,大規模言語モデル (LLMs) と視覚言語モデル (VLMs) をロボティクスアプリケーションに統合する際のロバスト性と安全性に関する重要な課題を強調する。
論文 参考訳(メタデータ) (2024-02-15T22:01:45Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Machine Learning with Confidential Computing: A Systematization of Knowledge [9.632031075287047]
機械学習(ML)におけるプライバシとセキュリティの課題は、MLの広範な開発と、最近の大規模な攻撃面のデモとともに、ますます深刻になっている。
成熟したシステム指向のアプローチとして、Confidential Computingは、さまざまなMLシナリオにおけるプライバシとセキュリティの問題を軽減するために、学術と産業の両方で使用されている。
機密性保証とii)整合性保証を提供する機密コンピューティング支援ML技術に関する先行研究を体系化し、それらの高度な特徴と欠点について論じる。
論文 参考訳(メタデータ) (2022-08-22T08:23:53Z) - Confidential Machine Learning Computation in Untrusted Environments: A
Systems Security Perspective [1.9116784879310027]
本稿では,TEE保護型秘密MLにおける攻撃ベクトルの分類と緩和によって,信頼できない環境下での包括的かつ包括的調査を行う。
マルチパーティのMLセキュリティ要件を分析し、関連するエンジニアリング課題について議論する。
論文 参考訳(メタデータ) (2021-11-05T07:56:25Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Towards a Robust and Trustworthy Machine Learning System Development [0.09236074230806578]
最新のML信頼性と技術に関する最近の調査をセキュリティエンジニアリングの視点から紹介します。
次に、ML実践者のための標準的かつ視覚化された方法で知識の体を表すメタモデルを記述することによって、調査の前後に研究を進めます。
本稿では,堅牢で信頼性の高いMLシステムの開発を進めるための今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2021-01-08T14:43:58Z) - Robust Machine Learning Systems: Challenges, Current Trends,
Perspectives, and the Road Ahead [24.60052335548398]
機械学習(ML)技術は、スマートサイバーフィジカルシステム(CPS)とIoT(Internet-of-Things)によって急速に採用されています。
ハードウェアとソフトウェアの両方のレベルで、さまざまなセキュリティと信頼性の脅威に脆弱であり、その正確性を損ないます。
本稿では、現代のMLシステムの顕著な脆弱性を要約し、これらの脆弱性に対する防御と緩和技術の成功を強調する。
論文 参考訳(メタデータ) (2021-01-04T20:06:56Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。