論文の概要: Spurious Correlations in Reference-Free Evaluation of Text Generation
- arxiv url: http://arxiv.org/abs/2204.09890v1
- Date: Thu, 21 Apr 2022 05:32:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-22 13:23:59.376219
- Title: Spurious Correlations in Reference-Free Evaluation of Text Generation
- Title(参考訳): テキスト生成の参照フリー評価におけるスプリアス相関
- Authors: Esin Durmus, Faisal Ladhak, Tatsunori Hashimoto
- Abstract要約: 本研究では,要約とダイアログ生成の基準フリー評価指標が,単語重複,パープレキシティ,長さなどの指標と急激な相関に依拠していることを示す。
評価指標を明示的に設計し,参照不要な評価の急激な特徴を避けることで,これらの誤差を軽減できることを実証する。
- 参考スコア(独自算出の注目度): 35.80256755393739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based, reference-free evaluation metrics have been proposed as a fast
and cost-effective approach to evaluate Natural Language Generation (NLG)
systems. Despite promising recent results, we find evidence that reference-free
evaluation metrics of summarization and dialog generation may be relying on
spurious correlations with measures such as word overlap, perplexity, and
length. We further observe that for text summarization, these metrics have high
error rates when ranking current state-of-the-art abstractive summarization
systems. We demonstrate that these errors can be mitigated by explicitly
designing evaluation metrics to avoid spurious features in reference-free
evaluation.
- Abstract(参考訳): モデルベース、参照フリーの評価指標は、自然言語生成(nlg)システムを評価するための高速でコスト効率の良いアプローチとして提案されている。
近年の有望な結果にもかかわらず、要約とダイアログ生成の基準フリー評価指標が、単語重複、パープレキシティ、長さなどの尺度と急激な相関に依拠している可能性が示唆されている。
さらに,テキスト要約では,現在最先端の抽象要約システムをランク付けする場合,これらの指標がエラー率が高いことを観察する。
評価指標を明示的に設計し,参照不要な評価の急激な特徴を避けることで,これらの誤差を軽減できることを示す。
関連論文リスト
- Mitigating the Impact of Reference Quality on Evaluation of Summarization Systems with Reference-Free Metrics [4.881135687863645]
我々は,人間の評価値とよく相関する基準のないメトリクスを導入し,計算が極めて安価である。
また,低品質の参照設定におけるロバスト性を改善するために,基準ベースのメトリクスと併用することも示している。
論文 参考訳(メタデータ) (2024-10-08T11:09:25Z) - Using Similarity to Evaluate Factual Consistency in Summaries [2.7595794227140056]
抽象要約器は流動的な要約を生成するが、生成したテキストの事実性は保証されない。
本稿では,ゼロショット事実性評価尺度であるSBERTScoreを提案する。
実験の結果,SBERTScoreでは,各手法の強度が異なることが示唆された。
論文 参考訳(メタデータ) (2024-09-23T15:02:38Z) - FENICE: Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction [85.26780391682894]
自然言語推論とクレーム抽出(FENICE)に基づく要約のファクチュアリティ評価を提案する。
FENICEは、ソース文書内の情報と、要約から抽出されたクレームと呼ばれる一連の原子的事実との間のNLIベースのアライメントを利用する。
我々の測定基準は、事実性評価のためのデファクトベンチマークであるAGGREFACTに関する新しい技術状況を設定する。
論文 参考訳(メタデータ) (2024-03-04T17:57:18Z) - Cobra Effect in Reference-Free Image Captioning Metrics [58.438648377314436]
視覚言語事前学習モデル(VLM)を活用した参照フリー手法の普及が出現している。
本稿では,基準自由度に欠陥があるかどうかを考察する。
GPT-4Vは生成した文を評価するための評価ツールであり,提案手法がSOTA(State-of-the-art)の性能を達成することを示す。
論文 参考訳(メタデータ) (2024-02-18T12:36:23Z) - AMRFact: Enhancing Summarization Factuality Evaluation with AMR-Driven Negative Samples Generation [57.8363998797433]
抽象的意味表現(AMR)を用いた摂動要約を生成するフレームワークであるAMRFactを提案する。
提案手法は,AMRグラフに一貫した要約を解析し,制御された事実不整合を注入して負の例を生成し,一貫性のない事実不整合要約を高い誤差型カバレッジで生成する。
論文 参考訳(メタデータ) (2023-11-16T02:56:29Z) - SWING: Balancing Coverage and Faithfulness for Dialogue Summarization [67.76393867114923]
本稿では,自然言語推論(NLI)モデルを用いて,事実の不整合を回避し,カバレッジを向上させることを提案する。
我々は、NLIを用いて詳細なトレーニング信号を計算し、モデルがカバーされていない参照サマリーのコンテンツを生成することを奨励する。
DialogSumおよびSAMSumデータセットの実験により,提案手法の有効性が確認された。
論文 参考訳(メタデータ) (2023-01-25T09:33:11Z) - On the Limitations of Reference-Free Evaluations of Generated Text [64.81682222169113]
基準のないメトリクスは本質的にバイアスがあり、生成したテキストを評価する能力に制限があることを示す。
機械翻訳や要約といったタスクの進捗を計測するために使用するべきではない、と我々は主張する。
論文 参考訳(メタデータ) (2022-10-22T22:12:06Z) - TRUE: Re-evaluating Factual Consistency Evaluation [29.888885917330327]
TRUE: 多様なタスクから既存のテキストの標準化されたコレクション上での、事実整合性メトリクスの総合的な研究である。
我々の標準化により、前述した相関よりも動作可能で解釈可能なサンプルレベルのメタ評価プロトコルが実現される。
さまざまな最先端のメトリクスと11のデータセットから、大規模NLIと質問生成と回答に基づくアプローチが、強力で相補的な結果をもたらすことが分かりました。
論文 参考訳(メタデータ) (2022-04-11T10:14:35Z) - REAM$\sharp$: An Enhancement Approach to Reference-based Evaluation
Metrics for Open-domain Dialog Generation [63.46331073232526]
オープンドメイン対話システムにおける参照ベースのEvAluation Metricsの拡張手法を提案する。
予測モデルは、与えられた基準セットの信頼性を推定するように設計されている。
本稿では,その予測結果が参照集合の増大にどのように役立つかを示し,測定値の信頼性を向上させる。
論文 参考訳(メタデータ) (2021-05-30T10:04:13Z) - Understanding Factuality in Abstractive Summarization with FRANK: A
Benchmark for Factuality Metrics [17.677637487977208]
現代の要約モデルは、高度に流れるが、実際には信頼できない出力を生成する。
一般的なベンチマークがないため、自動生成したサマリーの事実性を測定するためのメトリクスを比較することはできない。
我々は,事実誤りの類型を考案し,それを用いて,最先端の要約システムから生成された要約の人間のアノテーションを収集する。
論文 参考訳(メタデータ) (2021-04-27T17:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。