論文の概要: Mitigating the Impact of Reference Quality on Evaluation of Summarization Systems with Reference-Free Metrics
- arxiv url: http://arxiv.org/abs/2410.10867v1
- Date: Tue, 08 Oct 2024 11:09:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-20 09:11:00.103729
- Title: Mitigating the Impact of Reference Quality on Evaluation of Summarization Systems with Reference-Free Metrics
- Title(参考訳): 基準自由度による要約システム評価における基準品質の影響の緩和
- Authors: Théo Gigant, Camille Guinaudeau, Marc Decombas, Frédéric Dufaux,
- Abstract要約: 我々は,人間の評価値とよく相関する基準のないメトリクスを導入し,計算が極めて安価である。
また,低品質の参照設定におけるロバスト性を改善するために,基準ベースのメトリクスと併用することも示している。
- 参考スコア(独自算出の注目度): 4.881135687863645
- License:
- Abstract: Automatic metrics are used as proxies to evaluate abstractive summarization systems when human annotations are too expensive. To be useful, these metrics should be fine-grained, show a high correlation with human annotations, and ideally be independent of reference quality; however, most standard evaluation metrics for summarization are reference-based, and existing reference-free metrics correlate poorly with relevance, especially on summaries of longer documents. In this paper, we introduce a reference-free metric that correlates well with human evaluated relevance, while being very cheap to compute. We show that this metric can also be used alongside reference-based metrics to improve their robustness in low quality reference settings.
- Abstract(参考訳): 自動メトリクスは、人間のアノテーションが高価すぎるときに抽象的な要約システムを評価するプロキシとして使用される。
有用にするためには、これらの指標は微粒化され、人間のアノテーションと高い相関を示し、理想的には基準品質とは独立しているべきであるが、要約のための標準的な評価基準は参照ベースであり、既存の参照フリーメトリクスは、特に長い文書の要約において、関連性が低い。
本稿では,人間の評価値とよく相関する基準自由度指標を提案する。
また,低品質の参照設定におけるロバスト性を改善するために,基準ベースのメトリクスと併用することも示している。
関連論文リスト
- Is Reference Necessary in the Evaluation of NLG Systems? When and Where? [58.52957222172377]
基準自由度は人間の判断と高い相関を示し,言語品質の低下に対する感度が高いことを示す。
本研究は,自動測定の適切な適用方法と,測定値の選択が評価性能に与える影響について考察する。
論文 参考訳(メタデータ) (2024-03-21T10:31:11Z) - Reference-based Metrics Disprove Themselves in Question Generation [17.83616985138126]
人手による参照を用いることで、参照ベースのメトリクスの有効性を保証できないことがわかった。
優れた測定基準は、生成した質問に比較して、人間公認の質問を格付けすることが期待されている。
本研究では, 自然性, 応答性, 複雑性などの多次元的基準からなる基準自由度尺度を提案する。
論文 参考訳(メタデータ) (2024-03-18T20:47:10Z) - DocAsRef: An Empirical Study on Repurposing Reference-Based Summary
Quality Metrics Reference-Freely [29.4981129248937]
そこで本論文では,参照に基づくメトリクスを効果的に適用して,対応する参照に対してシステム概要を評価することを提案する。
ゼロショットのBERTScoreは、参照フリーで再利用された後、オリジナルの参照ベースバージョンよりも一貫してパフォーマンスが向上した。
GPT-3.5に基づくゼロショット要約評価器と密接に競合する。
論文 参考訳(メタデータ) (2022-12-20T06:01:13Z) - On the Limitations of Reference-Free Evaluations of Generated Text [64.81682222169113]
基準のないメトリクスは本質的にバイアスがあり、生成したテキストを評価する能力に制限があることを示す。
機械翻訳や要約といったタスクの進捗を計測するために使用するべきではない、と我々は主張する。
論文 参考訳(メタデータ) (2022-10-22T22:12:06Z) - Spurious Correlations in Reference-Free Evaluation of Text Generation [35.80256755393739]
本研究では,要約とダイアログ生成の基準フリー評価指標が,単語重複,パープレキシティ,長さなどの指標と急激な相関に依拠していることを示す。
評価指標を明示的に設計し,参照不要な評価の急激な特徴を避けることで,これらの誤差を軽減できることを実証する。
論文 参考訳(メタデータ) (2022-04-21T05:32:38Z) - WIDAR -- Weighted Input Document Augmented ROUGE [26.123086537577155]
提案する指標WIDARは,基準要約の品質に応じて評価スコアを適応させるように設計されている。
提案指標は, 整合性, 整合性, 流速性, 人的判断の関連性において, ROUGEよりも26%, 76%, 82%, 15%の相関関係を示した。
論文 参考訳(メタデータ) (2022-01-23T14:40:42Z) - A Training-free and Reference-free Summarization Evaluation Metric via
Centrality-weighted Relevance and Self-referenced Redundancy [60.419107377879925]
トレーニング不要かつ参照不要な要約評価指標を提案する。
我々の測定基準は、集中度重み付き関連度スコアと自己参照冗長度スコアからなる。
提案手法は,複数文書と単一文書の要約評価において,既存の手法よりも大幅に優れる。
論文 参考訳(メタデータ) (2021-06-26T05:11:27Z) - REAM$\sharp$: An Enhancement Approach to Reference-based Evaluation
Metrics for Open-domain Dialog Generation [63.46331073232526]
オープンドメイン対話システムにおける参照ベースのEvAluation Metricsの拡張手法を提案する。
予測モデルは、与えられた基準セットの信頼性を推定するように設計されている。
本稿では,その予測結果が参照集合の増大にどのように役立つかを示し,測定値の信頼性を向上させる。
論文 参考訳(メタデータ) (2021-05-30T10:04:13Z) - Understanding the Extent to which Summarization Evaluation Metrics
Measure the Information Quality of Summaries [74.28810048824519]
ROUGEとBERTScoreのトークンアライメントを分析し、要約を比較する。
それらのスコアは、情報の重複を測定するものとしては解釈できない、と我々は主張する。
論文 参考訳(メタデータ) (2020-10-23T15:55:15Z) - Towards Question-Answering as an Automatic Metric for Evaluating the
Content Quality of a Summary [65.37544133256499]
質問回答(QA)を用いて要約内容の質を評価する指標を提案する。
提案指標であるQAEvalの分析を通じて,QAに基づくメトリクスの実験的メリットを実証する。
論文 参考訳(メタデータ) (2020-10-01T15:33:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。