A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic
Data Imputation
- URL: http://arxiv.org/abs/2003.10271v2
- Date: Thu, 11 Jun 2020 17:43:52 GMT
- Title: A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic
Data Imputation
- Authors: Xinyu Chen, Jinming Yang and Lijun Sun
- Abstract summary: Missing data imputation is common in intemporal traffic data collected from various sensing systems.
We present an efficient algorithm to obtain the optimal solution for each variable.
The proposed model also outperforms other baseline models in extreme missing scenarios.
- Score: 13.48205738743634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparsity and missing data problems are very common in spatiotemporal traffic
data collected from various sensing systems. Making accurate imputation is
critical to many applications in intelligent transportation systems. In this
paper, we formulate the missing data imputation problem in spatiotemporal
traffic data in a low-rank tensor completion (LRTC) framework and define a
novel truncated nuclear norm (TNN) on traffic tensors of
location$\times$day$\times$time of day. In particular, we introduce an
universal rate parameter to control the degree of truncation on all tensor
modes in the proposed LRTC-TNN model, and this allows us to better characterize
the hidden patterns in spatiotemporal traffic data. Based on the framework of
the Alternating Direction Method of Multipliers (ADMM), we present an efficient
algorithm to obtain the optimal solution for each variable. We conduct
numerical experiments on four spatiotemporal traffic data sets, and our results
show that the proposed LRTC-TNN model outperforms many state-of-the-art
imputation models with missing rates/patterns. Moreover, the proposed model
also outperforms other baseline models in extreme missing scenarios.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - FastSTI: A Fast Conditional Pseudo Numerical Diffusion Model for Spatio-temporal Traffic Data Imputation [4.932317347331121]
High-temporal traffic data is crucial for intelligent transportation systems (ITS) and their data-driven applications.
Recent studies of diffusion probability models have demonstrated the superiority of deep generative models in imputation.
Fast on two types of real-world traffic datasets proves its ability to impute higher-quality samples in only six steps.
arXiv Detail & Related papers (2024-10-20T01:45:51Z) - Laplacian Convolutional Representation for Traffic Time Series Imputation [27.525490099749383]
We introduce a Laplacian kernel to temporal regularization for characterizing local trends in traffic time series.
We develop a low-rank Laplacian convolutional representation (LCR) model by putting the circulant matrix nuclear norm and the Laplacian kernelized temporal regularization.
We demonstrate the superiority of LCR over several baseline models for imputing traffic time series of various time series behaviors.
arXiv Detail & Related papers (2022-12-03T04:08:56Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
We propose a purely data-driven and model-free solution to the traffic state estimation problem.
By imposing a low-rank assumption on this tensor structure, we can approximate characterize both global patterns and the unknown complex local dynamics.
We conduct numerical experiments on both synthetic simulation data and real-world high-resolution data, and our results demonstrate the effectiveness and superiority of the proposed model.
arXiv Detail & Related papers (2021-05-21T00:08:06Z) - Low-Rank Autoregressive Tensor Completion for Spatiotemporal Traffic
Data Imputation [4.9831085918734805]
Missing data imputation has been a long-standing research topic and critical application for real-world intelligent transportation systems.
We propose a low-rank autoregressive tensor completion (LATC) framework by introducing textittemporal variation as a new regularization term.
We conduct extensive numerical experiments on several real-world traffic data sets, and our results demonstrate the effectiveness of LATC in diverse missing scenarios.
arXiv Detail & Related papers (2021-04-30T12:00:57Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.