論文の概要: HEATGait: Hop-Extracted Adjacency Technique in Graph Convolution based
Gait Recognition
- arxiv url: http://arxiv.org/abs/2204.10238v1
- Date: Thu, 21 Apr 2022 16:13:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-22 13:47:55.023508
- Title: HEATGait: Hop-Extracted Adjacency Technique in Graph Convolution based
Gait Recognition
- Title(参考訳): HEATGait:グラフ畳み込みに基づく歩行認識におけるホップ抽出適応手法
- Authors: Md. Bakhtiar Hasan, Tasnim Ahmed, Md. Hasanul Kabir
- Abstract要約: HEATGaitは,効率的なホップ抽出技術により既存のマルチスケール畳み込みグラフを改善する歩行認識システムである。
本稿では,CASIA-BCN 歩行データセット上でのモデルに基づく歩行認識において,ResG を用いた最先端性能を実現する強力な特徴抽出器を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Biometric authentication using gait has become a promising field due to its
unobtrusive nature. Recent approaches in model-based gait recognition
techniques utilize spatio-temporal graphs for the elegant extraction of gait
features. However, existing methods often rely on multi-scale operators for
extracting long-range relationships among joints resulting in biased weighting.
In this paper, we present HEATGait, a gait recognition system that improves the
existing multi-scale graph convolution by efficient hop-extraction technique to
alleviate the issue. Combined with preprocessing and augmentation techniques,
we propose a powerful feature extractor that utilizes ResGCN to achieve
state-of-the-art performance in model-based gait recognition on the CASIA-B
gait dataset.
- Abstract(参考訳): 歩行を用いた生体認証は邪魔にならない性質から有望な分野となっている。
時空間グラフを用いた歩行特徴のエレガント抽出のためのモデルに基づく歩行認識手法の最近のアプローチ
しかし、既存の手法は、しばしば、偏重み付けをもたらす関節間の長距離関係を抽出するマルチスケール演算子に依存している。
本稿では,既存のマルチスケールグラフ畳み込みを改善し,効率的なホップ抽出手法を用いてこの問題を緩和する歩行認識システムであるheatgaitを提案する。
CASIA-B歩行データセット上でのモデルベース歩行認識において,ResGCNを用いた最先端性能を実現する強力な特徴抽出器を提案する。
関連論文リスト
- Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z) - Gait Recognition in the Wild: A Large-scale Benchmark and NAS-based
Baseline [95.88825497452716]
歩行ベンチマークにより、研究コミュニティは高性能歩行認識システムの訓練と評価を行うことができる。
GREWは、野生における歩行認識のための最初の大規模データセットである。
SPOSGaitはNASベースの最初の歩行認識モデルである。
論文 参考訳(メタデータ) (2022-05-05T14:57:39Z) - Towards a Deeper Understanding of Skeleton-based Gait Recognition [4.812321790984493]
近年、ほとんどの歩行認識法は、人のシルエットを使って歩行の特徴を抽出している。
モデルに基づく手法はこれらの問題に悩まされず、身体関節の時間運動を表現することができる。
本研究では,高次入力と残差ネットワークを組み合わせたグラフ畳み込みネットワーク(GCN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-16T18:23:37Z) - Spatio-temporal Gait Feature with Adaptive Distance Alignment [90.5842782685509]
我々は,ネットワーク構造の最適化と抽出した歩行特徴の洗練という2つの側面から,異なる被験者の歩行特徴の差を増大させようとしている。
提案手法は時空間特徴抽出(SFE)と適応距離アライメント(ADA)から構成される。
ADAは実生活における多数の未ラベルの歩行データをベンチマークとして使用し、抽出した時間的特徴を洗練し、クラス間類似度が低く、クラス内類似度が高いようにしている。
論文 参考訳(メタデータ) (2022-03-07T13:34:00Z) - Combining the Silhouette and Skeleton Data for Gait Recognition [13.345465199699]
2つの主要な歩行認識作品は外観ベースとモデルベースであり、シルエットと骨格からそれぞれ特徴を抽出する。
本稿では, シルエットを入力とするCNN系分岐と, 骨格を入力とするGCN系分岐を提案する。
GCNベースの分岐における歩行表現を改善するため、マルチスケールグラフ畳み込みを統合する完全連結グラフ畳み込み演算子を提案する。
論文 参考訳(メタデータ) (2022-02-22T03:21:51Z) - Model-based gait recognition using graph network on very large
population database [3.8707695363745223]
本稿では,主題の増加とビューの変動に抵抗するため,局所的な特徴を構築し,シマウマネットワークを提案する。
OUM-Poseと呼ばれる非常に人口の多いデータセットと一般的なデータセットであるCASIA-Bの実験は、我々の手法がモデルに基づく歩行認識におけるSOTA(State-of-the-art)のパフォーマンスをアーカイブしていることを示している。
論文 参考訳(メタデータ) (2021-12-20T02:28:02Z) - SelfGait: A Spatiotemporal Representation Learning Method for
Self-supervised Gait Recognition [24.156710529672775]
歩行認識は、歩行が距離で認識することができるユニークな生体測定機能であるため、人間の識別に重要な役割を果たします。
既存の歩行認識法は歩行系列から歩行特徴を異なる方法で学習することができるが、歩行認識の性能はラベル付きデータに苦しむ。
本研究では, 事前学習プロセスとして, 多種多様でラベルなしの歩行データを活用した自己監視歩行認識手法であるSelfGaitを提案する。
論文 参考訳(メタデータ) (2021-03-27T05:15:39Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Associated Spatio-Temporal Capsule Network for Gait Recognition [36.85667679699001]
最先端のアプローチは、歩行の時間的または空間的特性の分析に依存する。
ASTCapsNetはマルチセンサーデータセットのトレーニングを受け、歩行認識のためのマルチモーダル情報を分析します。
論文 参考訳(メタデータ) (2021-01-07T09:55:17Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
本稿では,グラフ畳み込みネットワークのためのコンパクトで問題固有のネットワークを,段階的に自動的に見つける手法を提案する。
骨格に基づく人体行動認識のための2つのデータセットの実験結果から,提案手法は競争力あるいはより優れた分類性能を有することが示された。
論文 参考訳(メタデータ) (2020-11-11T09:57:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。