Feature anomaly detection system (FADS) for intelligent manufacturing
- URL: http://arxiv.org/abs/2204.10318v1
- Date: Thu, 21 Apr 2022 17:54:37 GMT
- Title: Feature anomaly detection system (FADS) for intelligent manufacturing
- Authors: Anthony Garland, Kevin Potter, Matt Smith
- Abstract summary: We present a new anomaly detection algorithm called FADS (feature-based anomaly detection system)
FADS generates a statistical model of nominal inputs by observing the activation of the convolutional filters.
During inference the system compares the convolutional filter activation of the new input to the statistical model and flags activations that are outside the expected range of values.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection is important for industrial automation and part quality
assurance, and while humans can easily detect anomalies in components given a
few examples, designing a generic automated system that can perform at human or
above human capabilities remains a challenge. In this work, we present a simple
new anomaly detection algorithm called FADS (feature-based anomaly detection
system) which leverages pretrained convolutional neural networks (CNN) to
generate a statistical model of nominal inputs by observing the activation of
the convolutional filters. During inference the system compares the
convolutional filter activation of the new input to the statistical model and
flags activations that are outside the expected range of values and therefore
likely an anomaly. By using a pretrained network, FADS demonstrates excellent
performance similar to or better than other machine learning approaches to
anomaly detection while at the same time FADS requires no tuning of the CNN
weights. We demonstrate FADS ability by detecting process parameter changes on
a custom dataset of additively manufactured lattices. The FADS localization
algorithm shows that textural differences that are visible on the surface can
be used to detect process parameter changes. In addition, we test FADS on
benchmark datasets, such as the MVTec Anomaly Detection dataset, and report
good results.
Related papers
- Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Electrical Grid Anomaly Detection via Tensor Decomposition [41.94295877935867]
Previous work has shown that dimensionality reduction-based approaches can be used for accurate identification of anomalies in SCADA systems.
In this work, we novelly apply the tensor decomposition method Canonical Polyadic Alternating Poisson Regression with a probabilistic framework, to identify anomalies in SCADA systems.
In our experiments, we model real-world SCADA system data collected from the electrical grid operated by Los Alamos National Laboratory.
arXiv Detail & Related papers (2023-10-12T18:23:06Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Time Series Anomaly Detection for Cyber-physical Systems via Neural
System Identification and Bayesian Filtering [1.9924944826583602]
AIoT technologies have led to an increasing popularity of utilizing machine learning algorithms to detect operational failures for cyber-physical systems (CPS)
We propose a novel time series anomaly detection method called Neural System Identification and Bayesian Filtering (NSIBF) in which a specially crafted neural network architecture is posed for system identification.
We show that NSIBF compares favorably to the state-of-the-art methods with considerable improvements on anomaly detection in CPS.
arXiv Detail & Related papers (2021-06-15T09:11:35Z) - Detecting Anomalies Through Contrast in Heterogeneous Data [21.56932906044264]
We propose Contrastive Learning based Heterogeneous Anomaly Detector to address shortcomings of prior models.
Our model uses an asymmetric autoencoder that can effectively handle large arity categorical variables.
We provide a qualitative study to showcase the effectiveness of our model in detecting anomalies in timber trade.
arXiv Detail & Related papers (2021-04-02T17:21:12Z) - Including Sparse Production Knowledge into Variational Autoencoders to
Increase Anomaly Detection Reliability [3.867363075280544]
We study using rarely occurring information about labeled anomalies into Variational Autoencoder neural network structures.
This method outperforms all other models in terms of accuracy, precision, and recall.
arXiv Detail & Related papers (2021-03-24T05:54:12Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Data Anomaly Detection for Structural Health Monitoring of Bridges using
Shapelet Transform [0.0]
A number of Structural Health Monitoring (SHM) systems are deployed to monitor civil infrastructure.
The data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors.
This paper proposes the use of a relatively new time series representation named Shapelet Transform to autonomously identify anomalies in SHM data.
arXiv Detail & Related papers (2020-08-31T01:11:04Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.