Distributing Polarization Entangled Photon Pairs with High Rate over
Long Distance through Standard Telecommunication Fiber
- URL: http://arxiv.org/abs/2204.10571v1
- Date: Fri, 22 Apr 2022 08:40:19 GMT
- Title: Distributing Polarization Entangled Photon Pairs with High Rate over
Long Distance through Standard Telecommunication Fiber
- Authors: Lijiong Shen, Chang Hoong Chow, Justin Yu Xiang Peh, Xi Jie Yeo, Peng
Kian Tan, Christian Kurtsiefer
- Abstract summary: Entanglement distribution over long distances is essential for many quantum communication schemes.
We present entanglement distribution over 50km of standard telecommunication fiber with pair rate more than 10,000 s$-1$ using a bright non-degenerate photon pair source.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement distribution over long distances is essential for many quantum
communication schemes like quantum teleportation, some variants of quantum key
distribution, or implementations of a quantum internet. Distributing
entanglement through standard telecommunication fiber is particularly important
for quantum key distribution protocols with low vulnerability over metropolitan
distances. However, entanglement distribution over long distance through
optical fiber so far could only be accomplished with moderate photon pair
rates. In this work, we present entanglement distribution over 50km of standard
telecommunication fiber with pair rate more than 10,000 s$^{-1}$ using a bright
non-degenerate photon pair source. Signal and idler wavelengths of this source
are optimized for low dispersion in optical fiber and high efficiency for
single-photon avalanche diode detectors, respectively. The resulting modest
hardware requirement and high rate of detected entangled photon pairs could
significantly enhance practical entanglement-based quantum key distribution in
existing metropolitan fiber networks.
Related papers
- Metropolitan-scale Entanglement Distribution with Co-existing Quantum
and Classical Signals in a single fiber [0.0]
Development of prototype metropolitan-scale quantum networks involves transmitting quantum information via deployed optical fibers.
One approach addressing these challenges is to co-propagate classical probe signals in the same fiber as the quantum signal.
Here, we demonstrate the distribution of polarization entangled quantum signals co-propagating with the White Rabbit Precision Time Protocol (WR-PTP) classical signals in the same single-core fiber strand at metropolitan-scale distances.
arXiv Detail & Related papers (2024-02-01T14:21:39Z) - High-rate sub-GHz linewidth bichromatic entanglement source for quantum
networking [59.191830955730346]
In this work, we study an entanglement source based on four-wave mixing in a diamond configuration in a warm rubidium vapor.
We are able to achieve in-fiber entangled pair generation rates greater than $107, /s$, orders of magnitude higher than previously reported atomic sources.
arXiv Detail & Related papers (2023-04-11T21:19:30Z) - Quantum Key Distribution using Deterministic Single-Photon Sources over
a Field-Installed Fibre Link [2.1033685912119466]
We realize a quantum key distribution field trial using true single photons across an 18-km-long dark fibre, located in the Copenhagen metropolitan area.
A secret key generation rate of >2 kbits/s realized over a 9.6 dB channel loss is achieved with a polarization-encoded BB84 scheme.
arXiv Detail & Related papers (2023-01-23T12:43:23Z) - High quality entanglement distribution through telecommunication fiber
using near-infrared non-degenerate photon pairs [73.4643018649031]
In urban environments, the quantum channel in the form of telecommunication optical fiber (confirming to ITU G.652D standards) are available.
We investigate the possibility that for campus-type communications, entangled photons prepared in the Near-Infrared Range (NIR) can be transmitted successfully.
arXiv Detail & Related papers (2022-09-09T03:23:11Z) - Simultaneous transmission of hyper-entanglement in 3 degrees of freedom
through a multicore fiber [0.0]
Entanglement distribution is at the heart of most quantum communication protocols.
Inevitable loss of photons along quantum channels is a major obstacle for distributing entangled photons over long distances.
Spontaneous parametric down-conversion creates photons entangled in multiple high-dimensional degrees of freedom simultaneously.
arXiv Detail & Related papers (2022-08-23T07:20:40Z) - Plug-and-play quantum devices with efficient fiber-quantum dot interface [0.02638512174804417]
We demonstrate a highly efficient fiber-interfacing photonic device that directly launches single photons from quantum dots into a standard FC/PC-connectorized single-mode fiber.
Our approach realizes a plug-and-play single-photon device that does not require any optical alignment and thus guarantees long-term stability.
arXiv Detail & Related papers (2022-02-26T12:27:42Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Characterization and stability measurement of deployed multicore fibers
for quantum applications [50.591267188664666]
We characterize for the first time, in terms of phase stability, multiple strands of a 4-core multicore fiber installed underground in the city of L'Aquila.
We investigate the possibility of using such an infrastructure to implement quantum-enhanced schemes, such as high-dimensional quantum key distribution, quantum-based environmental sensors.
arXiv Detail & Related papers (2021-03-11T18:24:59Z) - Two-photon comb with wavelength conversion and 20-km distribution for
quantum communication [0.0]
In this study, we demonstrate a versatile entanglement source in the telecom band for fiber-based quantum internet.
After a total distribution length of 20-km in fiber, two-photon correlation is observed with an easily identifiable normalized correlation coefficient.
The presented implementation promises an efficient method for entanglement distribution that is compatible with quantum memory and frequency-multiplexed long-distance quantum communication applications.
arXiv Detail & Related papers (2020-10-12T03:56:54Z) - Stable Polarization Entanglement based Quantum Key Distribution over
Metropolitan Fibre Network [55.41644538483948]
We demonstrate a quantum key distribution implementation over deployed dark telecom fibers with polarisation-entangled photons generated at the O-band.
One of the photons in the pairs are propagated through 10km of deployed fiber while the others are detected locally.
This ensures continuous and stable QKD operation with an average QBER of 6.4% and a final key rate of 109 bits/s.
arXiv Detail & Related papers (2020-07-04T02:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.