Two-photon comb with wavelength conversion and 20-km distribution for
quantum communication
- URL: http://arxiv.org/abs/2010.05438v1
- Date: Mon, 12 Oct 2020 03:56:54 GMT
- Title: Two-photon comb with wavelength conversion and 20-km distribution for
quantum communication
- Authors: Kazuya Niizeki (1), Daisuke Yoshida (1), Ko Ito (1), Ippei Nakamura
(1,2), Nobuyuki Takei (3), Kotaro Okamura (4), Ming-Yang Zheng (5), Xiu-Ping
Xie (5), Tomoyuki Horikiri (1,6) ((1) Yokohama National University, (2)
KISTEC, (3) Kyoto University, (4) Kanagawa University, (5) Jinan Institute of
Quantum Technology, (6) JST PRESTO)
- Abstract summary: In this study, we demonstrate a versatile entanglement source in the telecom band for fiber-based quantum internet.
After a total distribution length of 20-km in fiber, two-photon correlation is observed with an easily identifiable normalized correlation coefficient.
The presented implementation promises an efficient method for entanglement distribution that is compatible with quantum memory and frequency-multiplexed long-distance quantum communication applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing and quantum communication, have been greatly developed in
recent years and expected to contribute to quantum internet technologies,
including cloud quantum computing and unconditionally secure communication.
However, long-distance quantum communication is challenging mainly because of
optical fiber losses; quantum repeaters are indispensable for fiber-based
transmission because unknown quantum states cannot be amplified with certainty.
In this study, we demonstrate a versatile entanglement source in the telecom
band for fiber-based quantum internet, which has a narrow linewidth of sub-MHz
range, entanglement fidelity of more than 95%, and Bell-state generation even
with frequency multimode. Furthermore, after a total distribution length of
20-km in fiber, two-photon correlation is observed with an easily identifiable
normalized correlation coefficient, despite the limited bandwidth of the
wavelength converter. The presented implementation promises an efficient method
for entanglement distribution that is compatible with quantum memory and
frequency-multiplexed long-distance quantum communication applications.
Related papers
- Quantum teleportation with dissimilar quantum dots over a hybrid quantum network [24.574514809868866]
Photonic quantum information processing in quantum networks lays the foundation for cloud quantum computing, secure communication, and the realization of a global quantum internet.
Here, we demonstrate the exploitation of distinct quantum emitters to implement all-photonic quantum teleportation among distant parties.
The achieved teleportation state fidelity reaches up to 82+-1%, above the classical limit by more than 10 standard deviations.
arXiv Detail & Related papers (2024-11-19T10:16:58Z) - Robust excitation of C-band quantum dots for quantum communication [0.0]
We experimentally demonstrate how varying the pump energy and spectral detuning can improve quantum-secured communication rates.
These findings have significant implications for general implementations of QD single-photon sources in practical quantum communication networks.
arXiv Detail & Related papers (2023-05-22T17:35:18Z) - Frequency-multiplexed storage and distribution of narrowband telecom
photon pairs over a 10-km fiber link with long-term system stability [0.0]
The ability to transmit quantum states over long distances is a fundamental requirement of the quantum internet.
We demonstrate the storing of a frequency-multiplexed two-photon source at telecommunication wavelengths in a quantum memory accepting visible wavelengths.
arXiv Detail & Related papers (2023-03-03T02:32:43Z) - Distributing Polarization Entangled Photon Pairs with High Rate over
Long Distance through Standard Telecommunication Fiber [0.0]
Entanglement distribution over long distances is essential for many quantum communication schemes.
We present entanglement distribution over 50km of standard telecommunication fiber with pair rate more than 10,000 s$-1$ using a bright non-degenerate photon pair source.
arXiv Detail & Related papers (2022-04-22T08:40:19Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Entangling single atoms over 33 km telecom fibre [2.527878267188811]
We present results demonstrating heralded entanglement between two independent, remote single-atom quantum memories generated over fibre links with a total length up to 33 km.
The presented work represents a milestone towards the realization of efficient quantum network links.
arXiv Detail & Related papers (2021-11-30T16:13:40Z) - Characterization and stability measurement of deployed multicore fibers
for quantum applications [50.591267188664666]
We characterize for the first time, in terms of phase stability, multiple strands of a 4-core multicore fiber installed underground in the city of L'Aquila.
We investigate the possibility of using such an infrastructure to implement quantum-enhanced schemes, such as high-dimensional quantum key distribution, quantum-based environmental sensors.
arXiv Detail & Related papers (2021-03-11T18:24:59Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Stable transmission of high-dimensional quantum states over a 2 km
multicore fiber [45.82374977939355]
We prove how path encoded high-dimensional quantum states can be reliably transmitted over a 2 km long multicore fiber.
We take advantage of a phase-locked loop system guaranteeing a stable interferometric detection.
arXiv Detail & Related papers (2020-01-30T09:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.