論文の概要: Metric Learning and Adaptive Boundary for Out-of-Domain Detection
- arxiv url: http://arxiv.org/abs/2204.10849v1
- Date: Fri, 22 Apr 2022 17:54:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-25 13:50:58.575056
- Title: Metric Learning and Adaptive Boundary for Out-of-Domain Detection
- Title(参考訳): ドメイン外検出のためのメトリック学習と適応境界
- Authors: Petr Lorenc, Tommaso Gargiani, Jan Pichl, Jakub Konr\'ad, Petr Marek,
Ond\v{r}ej Kobza, Jan \v{S}ediv\'y
- Abstract要約: 我々はOODデータに依存しないOOD検出アルゴリズムを設計した。
提案アルゴリズムは,メトリック学習と適応的決定境界を併用する,シンプルだが効率的な手法に基づいている。
他のアルゴリズムと比較して,提案アルゴリズムでは,クラス数が少ないシナリオにおいて,OOD性能が大幅に向上していることが判明した。
- 参考スコア(独自算出の注目度): 0.9236074230806579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational agents are usually designed for closed-world environments.
Unfortunately, users can behave unexpectedly. Based on the open-world
environment, we often encounter the situation that the training and test data
are sampled from different distributions. Then, data from different
distributions are called out-of-domain (OOD). A robust conversational agent
needs to react to these OOD utterances adequately. Thus, the importance of
robust OOD detection is emphasized. Unfortunately, collecting OOD data is a
challenging task. We have designed an OOD detection algorithm independent of
OOD data that outperforms a wide range of current state-of-the-art algorithms
on publicly available datasets. Our algorithm is based on a simple but
efficient approach of combining metric learning with adaptive decision
boundary. Furthermore, compared to other algorithms, we have found that our
proposed algorithm has significantly improved OOD performance in a scenario
with a lower number of classes while preserving the accuracy for in-domain
(IND) classes.
- Abstract(参考訳): 会話エージェントは通常、クローズドワールド環境向けに設計される。
残念ながら、ユーザーは予期せず振る舞うことができる。
オープンワールド環境に基づいて、トレーニングとテストデータが異なるディストリビューションからサンプリングされる状況に遭遇することがよくあります。
次に、異なる分布からのデータを外部ドメイン(OOD)と呼ぶ。
堅牢な会話エージェントは、これらのOOD発話に適切に反応する必要がある。
したがって、ロバストなOOD検出の重要性が強調される。
残念ながら、OODデータの収集は難しい作業です。
我々は,OODデータに依存しないOOD検出アルゴリズムを設計した。
提案アルゴリズムは,メトリック学習と適応的決定境界を併用する,シンプルだが効率的な手法に基づいている。
さらに,他のアルゴリズムと比較して,提案アルゴリズムは,ドメイン内(IND)クラスの精度を保ちながら,クラス数が低いシナリオにおいてOOD性能を著しく向上していることがわかった。
関連論文リスト
- EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
安全(r)AIとの関連性を考えると,OOD検出法の比較の基礎が実用的ニーズと整合しているかどうかを検討することが重要である。
我々は,IDとOODの分離が不十分なことを明示する新しい指標であるAUTC(Area Under the Threshold Curve)を提案する。
論文 参考訳(メタデータ) (2023-06-26T12:51:32Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
既存のポストホック法はOOD検出でのみ評価した場合とは大きく異なる性能を示す。
本稿では,特徴に依存しない情報を用いて,ソフトマックスに基づく信頼度を向上するSCOD(Softmax Information Retaining Combination, SIRC)の新たな手法を提案する。
多様なImageNetスケールのデータセットと畳み込みニューラルネットワークアーキテクチャの実験は、SIRCがSCODのベースラインを一貫して一致または上回っていることを示している。
論文 参考訳(メタデータ) (2022-07-15T14:39:57Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
Igeoodは, オフ・オブ・ディストリビューション(OOD)サンプルを効果的に検出する手法である。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、機械学習モデルにさまざまなアクセス権を持つ。
Igeoodは、さまざまなネットワークアーキテクチャやデータセットにおいて、競合する最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T11:26:35Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
アウト・オブ・ディストリビューション(OOD)検出は、野生にデプロイされた機械学習モデルにとって重要である。
近年の手法では,OOD検出の改善のために補助外乱データを用いてモデルを正規化している。
我々は、自然にIDとOODの両方のサンプルで構成される野生の混合データを活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T15:38:39Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
インテント分類は、音声言語理解(SLU)における主要な課題である
近年の研究では、余分なデータやラベルを使用することで、OOD検出性能が向上することが示されている。
本稿では、IND意図分類とOOD検出の両方をサポートしながら、INDデータのみを用いてモデルを訓練することを提案する。
論文 参考訳(メタデータ) (2021-06-28T08:27:38Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Probing Predictions on OOD Images via Nearest Categories [97.055916832257]
ニューラルネットワークが未確認のクラスや破損したイメージから画像を分類する際のアウト・オブ・ディストリビューション(OOD)予測挙動について検討する。
我々は、トレーニングセットにおいて、最も近い隣人と同じラベルで分類されたOOD入力の分数を計算するため、新しい測度、最も近いカテゴリ一般化(NCG)を導入する。
我々は、OODデータがロバストネス半径よりも遥かに遠くにある場合でも、ロバストネットワークは自然訓練よりも一貫してNCG精度が高いことを発見した。
論文 参考訳(メタデータ) (2020-11-17T07:42:27Z) - Likelihood Ratios and Generative Classifiers for Unsupervised
Out-of-Domain Detection In Task Oriented Dialog [24.653367921046442]
タスクベース対話システムに対する自然言語文入力のためのOOD検出に着目する。
公開データセットの4K OODサンプルのデータセットをSchusterらからリリースしています。
論文 参考訳(メタデータ) (2019-12-30T03:31:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。