Exploiting Session Information in BERT-based Session-aware Sequential
Recommendation
- URL: http://arxiv.org/abs/2204.10851v1
- Date: Fri, 22 Apr 2022 17:58:10 GMT
- Title: Exploiting Session Information in BERT-based Session-aware Sequential
Recommendation
- Authors: Jinseok Seol, Youngrok Ko, Sang-goo Lee
- Abstract summary: In recommendation systems, utilizing the user interaction history as sequential information has resulted in great performance improvement.
In many online services, user interactions are commonly grouped by sessions that presumably share preferences, which requires a different approach from ordinary sequence representation techniques.
We propose three methods to improve recommendation performance by exploiting session information while minimizing additional parameters in a BERT-based sequential recommendation model.
- Score: 13.15762859612114
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In recommendation systems, utilizing the user interaction history as
sequential information has resulted in great performance improvement. However,
in many online services, user interactions are commonly grouped by sessions
that presumably share preferences, which requires a different approach from
ordinary sequence representation techniques. To this end, sequence
representation models with a hierarchical structure or various viewpoints have
been developed but with a rather complex network structure. In this paper, we
propose three methods to improve recommendation performance by exploiting
session information while minimizing additional parameters in a BERT-based
sequential recommendation model: using session tokens, adding session segment
embeddings, and a time-aware self-attention. We demonstrate the feasibility of
the proposed methods through experiments on widely used recommendation
datasets.
Related papers
- BiVRec: Bidirectional View-based Multimodal Sequential Recommendation [55.87443627659778]
We propose an innovative framework, BivRec, that jointly trains the recommendation tasks in both ID and multimodal views.
BivRec achieves state-of-the-art performance on five datasets and showcases various practical advantages.
arXiv Detail & Related papers (2024-02-27T09:10:41Z) - A Sequence-Aware Recommendation Method Based on Complex Networks [1.385805101975528]
We build a network model from data and then use it to predict the user's subsequent actions.
The proposed method is implemented and tested experimentally on a large dataset.
arXiv Detail & Related papers (2022-09-30T16:34:39Z) - Towards Universal Sequence Representation Learning for Recommender
Systems [98.02154164251846]
We present a novel universal sequence representation learning approach, named UniSRec.
The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios.
Our approach can be effectively transferred to new recommendation domains or platforms in a parameter-efficient way.
arXiv Detail & Related papers (2022-06-13T07:21:56Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Heterogeneous Graph Neural Network for Personalized Session-Based
Recommendation with User-Session Constraints [0.0]
Session-based recommendation attempts to recommend items by interpreting sessions that consist of sequences of items.
In this paper, we consider various relationships in graph created by sessions through Heterogeneous attention network.
It seeks to increase performance through additional optimization in the training process.
arXiv Detail & Related papers (2022-05-23T14:35:26Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Improved Representation Learning for Session-based Recommendation [0.0]
Session-based recommendation systems suggest relevant items to users by modeling user behavior and preferences using short-term anonymous sessions.
Existing methods leverage Graph Neural Networks (GNNs) that propagate and aggregate information from neighboring nodes.
We propose using a Transformer in combination with a target attentive GNN, which allows richer Representation Learning.
arXiv Detail & Related papers (2021-07-04T00:57:28Z) - Session-aware Linear Item-Item Models for Session-based Recommendation [16.081904457871815]
Session-based recommendation aims at predicting the next item given a sequence of previous items consumed in the session.
We propose simple-yet-effective linear models for considering the holistic aspects of the sessions.
arXiv Detail & Related papers (2021-03-30T06:28:40Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
Dynamic recommendation is essential for recommender systems to provide real-time predictions based on sequential data.
Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations.
Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
arXiv Detail & Related papers (2021-01-08T04:16:24Z) - Session-aware Recommendation: A Surprising Quest for the
State-of-the-art [6.617487928813376]
Session-aware recommendations can be personalized according to the users' long-term preferences.
We benchmarked recent session-aware algorithms against each other and against a number of session-based recommendation algorithms.
Our work indicates that there remains a huge potential for more sophisticated session-aware recommendation algorithms.
arXiv Detail & Related papers (2020-11-06T15:18:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.