Dimension Reduction for time series with Variational AutoEncoders
- URL: http://arxiv.org/abs/2204.11060v1
- Date: Sat, 23 Apr 2022 12:26:01 GMT
- Title: Dimension Reduction for time series with Variational AutoEncoders
- Authors: William Todo and Beatrice Laurent and Jean-Michel Loubes and Merwann
Selmani
- Abstract summary: We conduct a comparison between wavelet decomposition and convolutional variational autoencoders for dimension reduction.
We show that variational autoencoders are a good option for reducing the dimension of high dimensional data like ECG.
- Score: 2.905751301655124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we explore dimensionality reduction techniques for univariate
and multivariate time series data. We especially conduct a comparison between
wavelet decomposition and convolutional variational autoencoders for dimension
reduction. We show that variational autoencoders are a good option for reducing
the dimension of high dimensional data like ECG. We make these comparisons on a
real world, publicly available, ECG dataset that has lots of variability and
use the reconstruction error as the metric. We then explore the robustness of
these models with noisy data whether for training or inference. These tests are
intended to reflect the problems that exist in real-world time series data and
the VAE was robust to both tests.
Related papers
- Predictive variational autoencoder for learning robust representations
of time-series data [0.0]
We propose a VAE architecture that predicts the next point in time and show that it mitigates the learning of spurious features.
We show that together these two constraints on VAEs to be smooth over time produce robust latent representations and faithfully recover latent factors on synthetic datasets.
arXiv Detail & Related papers (2023-12-12T02:06:50Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - AnomalyBERT: Self-Supervised Transformer for Time Series Anomaly
Detection using Data Degradation Scheme [0.7216399430290167]
Anomaly detection task for time series, especially for unlabeled data, has been a challenging problem.
We address it by applying a suitable data degradation scheme to self-supervised model training.
Inspired by the self-attention mechanism, we design a Transformer-based architecture to recognize the temporal context.
arXiv Detail & Related papers (2023-05-08T05:42:24Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - RENs: Relevance Encoding Networks [0.0]
This paper proposes relevance encoding networks (RENs): a novel probabilistic VAE-based framework that uses the automatic relevance determination (ARD) prior in the latent space to learn the data-specific bottleneck dimensionality.
We show that the proposed model learns the relevant latent bottleneck dimensionality without compromising the representation and generation quality of the samples.
arXiv Detail & Related papers (2022-05-25T21:53:48Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
Existing implementations of KRR require that all the data is stored in the main memory.
We propose StreaMRAK - a streaming version of KRR.
We present a showcase study on two synthetic problems and the prediction of the trajectory of a double pendulum.
arXiv Detail & Related papers (2021-08-23T21:03:09Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Data Anomaly Detection for Structural Health Monitoring of Bridges using
Shapelet Transform [0.0]
A number of Structural Health Monitoring (SHM) systems are deployed to monitor civil infrastructure.
The data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors.
This paper proposes the use of a relatively new time series representation named Shapelet Transform to autonomously identify anomalies in SHM data.
arXiv Detail & Related papers (2020-08-31T01:11:04Z) - Simple and Effective VAE Training with Calibrated Decoders [123.08908889310258]
Variational autoencoders (VAEs) provide an effective and simple method for modeling complex distributions.
We study the impact of calibrated decoders, which learn the uncertainty of the decoding distribution.
We propose a simple but novel modification to the commonly used Gaussian decoder, which computes the prediction variance analytically.
arXiv Detail & Related papers (2020-06-23T17:57:47Z) - Longitudinal Variational Autoencoder [1.4680035572775534]
A common approach to analyse high-dimensional data that contains missing values is to learn a low-dimensional representation using variational autoencoders (VAEs)
Standard VAEs assume that the learnt representations are i.i.d., and fail to capture the correlations between the data samples.
We propose the Longitudinal VAE (L-VAE), that uses a multi-output additive Gaussian process (GP) prior to extend the VAE's capability to learn structured low-dimensional representations.
Our approach can simultaneously accommodate both time-varying shared and random effects, produce structured low-dimensional representations
arXiv Detail & Related papers (2020-06-17T10:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.