論文の概要: It Takes Two Flints to Make a Fire: Multitask Learning of Neural
Relation and Explanation Classifiers
- arxiv url: http://arxiv.org/abs/2204.11424v1
- Date: Mon, 25 Apr 2022 03:53:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-26 13:38:04.389210
- Title: It Takes Two Flints to Make a Fire: Multitask Learning of Neural
Relation and Explanation Classifiers
- Title(参考訳): 火を起こすのに2つのフリント:ニューラルネットワークと説明分類器のマルチタスク学習
- Authors: Zheng Tang, Mihai Surdeanu
- Abstract要約: 一般化と説明可能性の間の緊張を緩和する関係抽出のための説明可能なアプローチを提案する。
提案手法では,関係抽出のための分類器を共同で訓練するマルチタスク学習アーキテクチャを用いる。
このアプローチにグローバルな説明をもたらすために、モデル出力をルールに変換する。
- 参考スコア(独自算出の注目度): 40.666590079580544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an explainable approach for relation extraction that mitigates the
tension between generalization and explainability by jointly training for the
two goals. Our approach uses a multi-task learning architecture, which jointly
trains a classifier for relation extraction, and a sequence model that labels
words in the context of the relation that explain the decisions of the relation
classifier. We also convert the model outputs to rules to bring global
explanations to this approach. This sequence model is trained using a hybrid
strategy: supervised, when supervision from pre-existing patterns is available,
and semi-supervised otherwise. In the latter situation, we treat the sequence
model's labels as latent variables, and learn the best assignment that
maximizes the performance of the relation classifier. We evaluate the proposed
approach on the two datasets and show that the sequence model provides labels
that serve as accurate explanations for the relation classifier's decisions,
and, importantly, that the joint training generally improves the performance of
the relation classifier. We also evaluate the performance of the generated
rules and show that the new rules are great add-on to the manual rules and
bring the rule-based system much closer to the neural models.
- Abstract(参考訳): 本稿では,2つの目標を共同で学習することで,一般化と説明可能性の間の緊張を緩和する関係抽出のための説明可能なアプローチを提案する。
提案手法では,関係抽出のための分類器を共同で訓練するマルチタスク学習アーキテクチャと,関係分類器の決定を説明する関係の文脈で単語をラベル付けするシーケンスモデルを用いる。
また、モデル出力をルールに変換し、このアプローチにグローバルな説明をもたらす。
このシーケンスモデルは、教師あり、既存のパターンからの監視が利用可能で、それ以外は半監督される。
後者の状況では、シーケンスモデルのラベルを潜在変数として扱い、関係分類器の性能を最大化する最適な代入を学習する。
提案手法を2つのデータセット上で評価し,関係分類器の判断の正確な説明となるラベルをシーケンスモデルで提供し,さらに,関係分類器の性能が一般的に向上することを示す。
また、生成されたルールのパフォーマンスを評価し、新しいルールが手動ルールに優れたアドオンであることを示し、ルールベースのシステムをニューラルモデルにずっと近づける。
関連論文リスト
- Best of Both Worlds: A Pliable and Generalizable Neuro-Symbolic Approach
for Relation Classification [17.398872494876365]
本稿では,関係分類のための新しいニューロシンボリックアーキテクチャを提案する。
ルールベースの手法と現代のディープラーニング技術を組み合わせる。
提案手法は4つの設定のうち3つで従来の最先端モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-05T20:08:32Z) - Graph-based Time Series Clustering for End-to-End Hierarchical Forecasting [18.069747511100132]
時系列間の関係は、効果的な予測モデル学習における帰納バイアスとして利用することができる。
本稿では,関係性および階層的帰納バイアスを統一するグラフベースの手法を提案する。
論文 参考訳(メタデータ) (2023-05-30T16:27:25Z) - Mitigating Catastrophic Forgetting in Task-Incremental Continual
Learning with Adaptive Classification Criterion [50.03041373044267]
本稿では,継続的学習のための適応型分類基準を用いた教師付きコントラスト学習フレームワークを提案する。
実験により, CFLは最先端の性能を達成し, 分類基準に比べて克服する能力が強いことが示された。
論文 参考訳(メタデータ) (2023-05-20T19:22:40Z) - HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised
Relation Extraction [60.80849503639896]
非教師なし関係抽出は、関係範囲や分布に関する事前情報のない自然言語文からエンティティ間の関係を抽出することを目的としている。
本稿では,階層間注目を用いた階層的特徴空間から階層的信号を導出する機能を持つ,HiUREという新しいコントラスト学習フレームワークを提案する。
2つの公開データセットの実験結果は、最先端モデルと比較した場合の教師なし関係抽出におけるHiUREの有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-05-04T17:56:48Z) - Generative Relation Linking for Question Answering over Knowledge Bases [12.778133758613773]
そこで本稿では, フレーミングを生成問題とする関係リンク手法を提案する。
このようなシーケンス・ツー・シーケンス・モデルを拡張して,対象とする知識ベースから構造化データを注入する。
我々は、議論-関係ペアのリストからなる構造化された出力を生成するためにモデルを訓練し、知識検証のステップを可能にする。
論文 参考訳(メタデータ) (2021-08-16T20:33:43Z) - Refining Neural Networks with Compositional Explanations [31.84868477264624]
本稿では,モデルの失敗事例に関する人為的な構成説明を収集し,学習モデルの改良を提案する。
提案手法が2つのテキスト分類タスクに有効であることを示す。
論文 参考訳(メタデータ) (2021-03-18T17:48:54Z) - Clustering-based Unsupervised Generative Relation Extraction [3.342376225738321]
クラスタリングに基づく教師なし生成関係抽出フレームワーク(CURE)を提案する。
我々は「エンコーダ・デコーダ」アーキテクチャを用いて自己教師付き学習を行い、エンコーダが関係情報を抽出できるようにする。
我々のモデルは、ニューヨーク・タイムズ(NYT)と国連並列コーパス(UNPC)の標準データセットにおいて、最先端モデルよりも優れている。
論文 参考訳(メタデータ) (2020-09-26T20:36:40Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Adaptive Correlated Monte Carlo for Contextual Categorical Sequence
Generation [77.7420231319632]
我々は,モンテカルロ (MC) ロールアウトの集合を分散制御のために評価する政策勾配推定器に,カテゴリー列の文脈的生成を適用する。
また,二分木ソフトマックスモデルに相関したMCロールアウトを用いることで,大語彙シナリオにおける高生成コストを低減できることを示す。
論文 参考訳(メタデータ) (2019-12-31T03:01:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。