IMDeception: Grouped Information Distilling Super-Resolution Network
- URL: http://arxiv.org/abs/2204.11463v1
- Date: Mon, 25 Apr 2022 06:43:45 GMT
- Title: IMDeception: Grouped Information Distilling Super-Resolution Network
- Authors: Mustafa Ayazoglu
- Abstract summary: Single-Image-Super-Resolution (SISR) is a classical computer vision problem that has benefited from the recent advancements in deep learning methods.
In this work, we propose the Global Progressive Refinement Module (GPRM) as a less parameter-demanding alternative to the IIC module for feature aggregation.
We also propose Grouped Information Distilling Blocks (GIDB) to further decrease the number of parameters and floating point operations persecond (FLOPS)
Experiments reveal that the proposed network performs on par with state-of-the-art models despite having a limited number of parameters and FLOPS
- Score: 7.6146285961466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-Image-Super-Resolution (SISR) is a classical computer vision problem
that has benefited from the recent advancements in deep learning methods,
especially the advancements of convolutional neural networks (CNN). Although
state-of-the-art methods improve the performance of SISR on several datasets,
direct application of these networks for practical use is still an issue due to
heavy computational load. For this purpose, recently, researchers have focused
on more efficient and high-performing network structures. Information
multi-distilling network (IMDN) is one of the highly efficient SISR networks
with high performance and low computational load. IMDN achieves this efficiency
with various mechanisms such as Intermediate Information Collection (IIC),
working in a global setting, Progressive Refinement Module (PRM), and Contrast
Aware Channel Attention (CCA), employed in a local setting. These mechanisms,
however, do not equally contribute to the efficiency and performance of IMDN.
In this work, we propose the Global Progressive Refinement Module (GPRM) as a
less parameter-demanding alternative to the IIC module for feature aggregation.
To further decrease the number of parameters and floating point operations
persecond (FLOPS), we also propose Grouped Information Distilling Blocks
(GIDB). Using the proposed structures, we design an efficient SISR network
called IMDeception. Experiments reveal that the proposed network performs on
par with state-of-the-art models despite having a limited number of parameters
and FLOPS. Furthermore, using grouped convolutions as a building block of GIDB
increases room for further optimization during deployment. To show its
potential, the proposed model was deployed on NVIDIA Jetson Xavier AGX and it
has been shown that it can run in real-time on this edge device
Related papers
- Energy-Aware FPGA Implementation of Spiking Neural Network with LIF Neurons [0.5243460995467893]
Spiking Neural Networks (SNNs) stand out as a cutting-edge solution for TinyML.
This paper presents a novel SNN architecture based on the 1st Order Leaky Integrate-and-Fire (LIF) neuron model.
A hardware-friendly LIF design is also proposed, and implemented on a Xilinx Artix-7 FPGA.
arXiv Detail & Related papers (2024-11-03T16:42:10Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - Incorporating Transformer Designs into Convolutions for Lightweight
Image Super-Resolution [46.32359056424278]
Large convolutional kernels have become popular in designing convolutional neural networks.
The increase in kernel size also leads to a quadratic growth in the number of parameters, resulting in heavy computation and memory requirements.
We propose a neighborhood attention (NA) module that upgrades the standard convolution with a self-attention mechanism.
Building upon the NA module, we propose a lightweight single image super-resolution (SISR) network named TCSR.
arXiv Detail & Related papers (2023-03-25T01:32:18Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
Deep convolutional neural networks (CNNs) have obtained remarkable performance in single image super-resolution.
We propose a novel network architecture which utilizes attention blocks efficiently.
arXiv Detail & Related papers (2022-11-17T11:06:29Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
Recent advances in the design of convolutional neural network (CNN) have yielded significant improvements in the performance of image super-resolution (SR)
We propose a scale recurrent SR architecture built upon units containing series of dense connections within a residual block (Residual Dense Blocks (RDBs))
Our scale recurrent design delivers competitive performance for higher scale factors while being parametrically more efficient as compared to current state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-28T09:18:43Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
This paper is on highly accurate and highly efficient human pose estimation.
We re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art.
Our model achieves state-of-the-art results on the MPII and LSP datasets.
arXiv Detail & Related papers (2020-02-25T18:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.