X-Recon: Learning-based Patient-specific High-Resolution CT Reconstruction from Orthogonal X-Ray Images
- URL: http://arxiv.org/abs/2407.15356v1
- Date: Mon, 22 Jul 2024 03:55:36 GMT
- Title: X-Recon: Learning-based Patient-specific High-Resolution CT Reconstruction from Orthogonal X-Ray Images
- Authors: Yunpeng Wang, Kang Wang, Yaoyao Zhuo, Weiya Shi, Fei Shan, Lei Liu,
- Abstract summary: X-Recon is a reconstruction network based on ortho-lateral chest X-ray images.
PTX-Seg is a zero-shot pneumothorax segmentation algorithm.
The reconstruction metrics achieved state-of-the-art performance in terms of several metrics including peak signal-to-noise ratio.
- Score: 14.04604990570727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid and accurate diagnosis of pneumothorax, utilizing chest X-ray and computed tomography (CT), is crucial for assisted diagnosis. Chest X-ray is commonly used for initial localization of pneumothorax, while CT ensures accurate quantification. However, CT scans involve high radiation doses and can be costly. To achieve precise quantitative diagnosis while minimizing radiation exposure, we proposed X-Recon, a CT ultra-sparse reconstruction network based on ortho-lateral chest X-ray images. X-Recon integrates generative adversarial networks (GANs), including a generator with a multi-scale fusion rendering module and a discriminator enhanced by 3D coordinate convolutional layers, designed to facilitate CT reconstruction. To improve precision, a projective spatial transformer is utilized to incorporate multi-angle projection loss. Additionally, we proposed PTX-Seg, a zero-shot pneumothorax segmentation algorithm, combining image processing techniques with deep-learning models for the segmentation of air-accumulated regions and lung structures. Experiments on a large-scale dataset demonstrate its superiority over existing approaches. X-Recon achieved a significantly higher reconstruction resolution with a higher average spatial resolution and a lower average slice thickness. The reconstruction metrics achieved state-of-the-art performance in terms of several metrics including peak signal-to-noise ratio. The zero-shot segmentation algorithm, PTX-Seg, also demonstrated high segmentation precision for the air-accumulated region, the left lung, and the right lung. Moreover, the consistency analysis for the pneumothorax chest occupancy ratio between reconstructed CT and original CT obtained a high correlation coefficient. Code will be available at: https://github.com/wangyunpengbio/X-Recon
Related papers
- FCDM: Sparse-view Sinogram Inpainting with Frequency Domain Convolution Enhanced Diffusion Models [14.043383277622874]
We introduce a novel diffusion-based inpainting framework tailored for sinogram data.
FCDM significantly outperforms existing methods, achieving SSIM over 0.95 and PSNR above 30 dB, with improvements of up to 33% in SSIM and 29% in PSNR compared to baselines.
arXiv Detail & Related papers (2024-08-26T12:31:38Z) - Reconstruct Spine CT from Biplanar X-Rays via Diffusion Learning [26.866131691476255]
Intraoperative CT imaging serves as a crucial resource for surgical guidance; however, it may not always be readily accessible or practical to implement.
In this paper, we introduce an innovative method for 3D CT reconstruction utilizing biplanar X-rays.
arXiv Detail & Related papers (2024-08-19T06:34:01Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - XProspeCT: CT Volume Generation from Paired X-Rays [0.0]
We build on previous research to convert X-ray images into simulated CT volumes.
Model variations include UNet architectures, custom connections, activation functions, loss functions, and a novel back projection approach.
arXiv Detail & Related papers (2024-02-11T21:57:49Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - CT Reconstruction from Few Planar X-rays with Application towards
Low-resource Radiotherapy [20.353246282326943]
We propose a method to generate CT volumes from few (5) planar X-ray observations using a prior data distribution.
To focus the generation task on clinically-relevant features, our model can also leverage anatomical guidance during training.
Our method is better than recent sparse CT reconstruction baselines in terms of standard pixel and structure-level metrics.
arXiv Detail & Related papers (2023-08-04T01:17:57Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGAS proposes a self-supervised method to synthesize the undersampled tomographic views and mitigate aliasing artifacts in reconstructed images.
To address the large memory cost of deep neural networks on high resolution 4D data, REGAS introduces a novel Ray Path Transformation (RPT) that allows for distributed, differentiable forward projections.
arXiv Detail & Related papers (2022-08-17T03:42:19Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Multi-scale reconstruction of undersampled spectral-spatial OCT data for
coronary imaging using deep learning [1.8359410255568984]
Intravascular optical coherence tomography (IV OCT) has been considered as an optimal imagining system for the diagnosis and treatment of coronary artery disease (CAD)
There is a trade-off between high spatial resolution and fast scanning rate for coronary imaging.
We propose a viable spectral-spatial acquisition method that down-scales the sampling process in both spectral and spatial domain.
arXiv Detail & Related papers (2022-04-25T16:37:25Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.