Spectral Bandwidth Recovery of Optical Coherence Tomography Images using
Deep Learning
- URL: http://arxiv.org/abs/2301.00504v1
- Date: Mon, 2 Jan 2023 02:18:32 GMT
- Title: Spectral Bandwidth Recovery of Optical Coherence Tomography Images using
Deep Learning
- Authors: Timothy T. Yu, Da Ma, Jayden Cole, Myeong Jin Ju, Mirza F. Beg and
Marinko V. Sarunic
- Abstract summary: Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution.
Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data.
In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction.
- Score: 0.6990493129893112
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Optical coherence tomography (OCT) captures cross-sectional data and is used
for the screening, monitoring, and treatment planning of retinal diseases.
Technological developments to increase the speed of acquisition often results
in systems with a narrower spectral bandwidth, and hence a lower axial
resolution. Traditionally, image-processing-based techniques have been utilized
to reconstruct subsampled OCT data and more recently, deep-learning-based
methods have been explored. In this study, we simulate reduced axial scan
(A-scan) resolution by Gaussian windowing in the spectral domain and
investigate the use of a learning-based approach for image feature
reconstruction. In anticipation of the reduced resolution that accompanies
wide-field OCT systems, we build upon super-resolution techniques to explore
methods to better aid clinicians in their decision-making to improve patient
outcomes, by reconstructing lost features using a pixel-to-pixel approach with
an altered super-resolution generative adversarial network (SRGAN)
architecture.
Related papers
- PHOCUS: Physics-Based Deconvolution for Ultrasound Resolution Enhancement [36.20701982473809]
The impulse function of an ultrasound imaging system is called the point spread function (PSF), which is convolved with the spatial distribution of reflectors in the image formation process.
We introduce a physics-based deconvolution process using a modeled PSF, working directly on the more commonly available B-mode images.
By leveraging Implicit Neural Representations (INRs), we learn a continuous mapping from spatial locations to their respective echogenicity values, effectively compensating for the discretized image space.
arXiv Detail & Related papers (2024-08-07T09:52:30Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - Frequency-aware optical coherence tomography image super-resolution via
conditional generative adversarial neural network [0.3040864511503504]
We propose a frequency-aware super-resolution framework that integrates frequency-based modules and frequency-based loss function into a conditional generative adversarial network (cGAN)
We conducted a large-scale quantitative study from an existing coronary OCT dataset to demonstrate the superiority of our proposed framework over existing deep learning frameworks.
arXiv Detail & Related papers (2023-07-20T16:07:02Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Multi-scale reconstruction of undersampled spectral-spatial OCT data for
coronary imaging using deep learning [1.8359410255568984]
Intravascular optical coherence tomography (IV OCT) has been considered as an optimal imagining system for the diagnosis and treatment of coronary artery disease (CAD)
There is a trade-off between high spatial resolution and fast scanning rate for coronary imaging.
We propose a viable spectral-spatial acquisition method that down-scales the sampling process in both spectral and spatial domain.
arXiv Detail & Related papers (2022-04-25T16:37:25Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Learned Spectral Computed Tomography [0.0]
We propose a Deep Learning imaging method for Spectral Photon-Counting Computed Tomography.
The method takes the form of a two-step learned primal-dual algorithm that is trained using case-specific data.
The proposed approach is characterised by fast reconstruction capability and high imaging performance, even in limited-data cases.
arXiv Detail & Related papers (2020-03-09T13:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.