Real-Time Neural Character Rendering with Pose-Guided Multiplane Images
- URL: http://arxiv.org/abs/2204.11820v1
- Date: Mon, 25 Apr 2022 17:51:38 GMT
- Title: Real-Time Neural Character Rendering with Pose-Guided Multiplane Images
- Authors: Hao Ouyang, Bo Zhang, Pan Zhang, Hao Yang, Jiaolong Yang, Dong Chen,
Qifeng Chen, Fang Wen
- Abstract summary: We propose pose-guided multiplane image (MPI) synthesis which can render an animatable character in real scenes with photorealistic quality.
We use a portable camera rig to capture the multi-view images along with the driving signal for the moving subject.
- Score: 75.62730144924566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose pose-guided multiplane image (MPI) synthesis which can render an
animatable character in real scenes with photorealistic quality. We use a
portable camera rig to capture the multi-view images along with the driving
signal for the moving subject. Our method generalizes the image-to-image
translation paradigm, which translates the human pose to a 3D scene
representation -- MPIs that can be rendered in free viewpoints, using the
multi-views captures as supervision. To fully cultivate the potential of MPI,
we propose depth-adaptive MPI which can be learned using variable exposure
images while being robust to inaccurate camera registration. Our method
demonstrates advantageous novel-view synthesis quality over the
state-of-the-art approaches for characters with challenging motions. Moreover,
the proposed method is generalizable to novel combinations of training poses
and can be explicitly controlled. Our method achieves such expressive and
animatable character rendering all in real time, serving as a promising
solution for practical applications.
Related papers
- Generative Camera Dolly: Extreme Monocular Dynamic Novel View Synthesis [43.02778060969546]
We propose a controllable monocular dynamic view synthesis pipeline.
Our model does not require depth as input, and does not explicitly model 3D scene geometry.
We believe our framework can potentially unlock powerful applications in rich dynamic scene understanding, perception for robotics, and interactive 3D video viewing experiences for virtual reality.
arXiv Detail & Related papers (2024-05-23T17:59:52Z) - MMPI: a Flexible Radiance Field Representation by Multiple Multi-plane
Images Blending [61.45757368117578]
This paper presents a flexible representation of neural radiance fields based on multi-plane images (MPI)
MPI is widely used in NeRF learning for its simple definition, easy calculation, and powerful ability to represent unbounded scenes.
We show that MPI can synthesize high-quality novel views of complex scenes with diverse camera distributions and view directions.
arXiv Detail & Related papers (2023-09-30T04:36:43Z) - FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses
via Pixel-Aligned Scene Flow [26.528667940013598]
Reconstruction of 3D neural fields from posed images has emerged as a promising method for self-supervised representation learning.
Key challenge preventing the deployment of these 3D scene learners on large-scale video data is their dependence on precise camera poses from structure-from-motion.
We propose a method that jointly reconstructs camera poses and 3D neural scene representations online and in a single forward pass.
arXiv Detail & Related papers (2023-05-31T20:58:46Z) - RUST: Latent Neural Scene Representations from Unposed Imagery [21.433079925439234]
Inferring structure of 3D scenes from 2D observations is a fundamental challenge in computer vision.
Recent popularized approaches based on neural scene representations have achieved tremendous impact.
RUST (Really Unposed Scene representation Transformer) is a pose-free approach to novel view trained on RGB images alone.
arXiv Detail & Related papers (2022-11-25T18:59:10Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2022-11-20T20:57:02Z) - FreeStyleGAN: Free-view Editable Portrait Rendering with the Camera
Manifold [5.462226912969161]
Current Generative Adversarial Networks (GANs) produce photorealistic renderings of portrait images.
We show how our approach enables the integration of a pre-trained StyleGAN into standard 3D rendering pipelines.
Our solution proposes the first truly free-viewpoint rendering of realistic faces at interactive rates.
arXiv Detail & Related papers (2021-09-20T08:59:21Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
DeepMultiCap is a novel method for multi-person performance capture using sparse multi-view cameras.
Our method can capture time varying surface details without the need of using pre-scanned template models.
arXiv Detail & Related papers (2021-05-01T14:32:13Z) - IBRNet: Learning Multi-View Image-Based Rendering [67.15887251196894]
We present a method that synthesizes novel views of complex scenes by interpolating a sparse set of nearby views.
By drawing on source views at render time, our method hearkens back to classic work on image-based rendering.
arXiv Detail & Related papers (2021-02-25T18:56:21Z) - Neural Radiance Flow for 4D View Synthesis and Video Processing [59.9116932930108]
We present a method to learn a 4D spatial-temporal representation of a dynamic scene from a set of RGB images.
Key to our approach is the use of a neural implicit representation that learns to capture the 3D occupancy, radiance, and dynamics of the scene.
arXiv Detail & Related papers (2020-12-17T17:54:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.