A Closer Look at Personalization in Federated Image Classification
- URL: http://arxiv.org/abs/2204.11841v1
- Date: Fri, 22 Apr 2022 06:32:18 GMT
- Title: A Closer Look at Personalization in Federated Image Classification
- Authors: Changxing Jing, Yan Huang, Yihong Zhuang, Liyan Sun, Yue Huang,
Zhenlong Xiao, Xinghao Ding
- Abstract summary: Federated Learning (FL) is developed to learn a single global model across the decentralized data.
This paper shows that it is possible to achieve flexible personalization after the convergence of the global model.
We propose RepPer, an independent two-stage personalized FL framework.
- Score: 33.27317065917578
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated Learning (FL) is developed to learn a single global model across
the decentralized data, while is susceptible when realizing client-specific
personalization in the presence of statistical heterogeneity. However, studies
focus on learning a robust global model or personalized classifiers, which
yield divergence due to inconsistent objectives. This paper shows that it is
possible to achieve flexible personalization after the convergence of the
global model by introducing representation learning. In this paper, we first
analyze and determine that non-IID data harms representation learning of the
global model. Existing FL methods adhere to the scheme of jointly learning
representations and classifiers, where the global model is an average of
classification-based local models that are consistently subject to
heterogeneity from non-IID data. As a solution, we separate representation
learning from classification learning in FL and propose RepPer, an independent
two-stage personalized FL framework.We first learn the client-side feature
representation models that are robust to non-IID data and aggregate them into a
global common representation model. After that, we achieve personalization by
learning a classifier head for each client, based on the common representation
obtained at the former stage. Notably, the proposed two-stage learning scheme
of RepPer can be potentially used for lightweight edge computing that involves
devices with constrained computation power.Experiments on various datasets
(CIFAR-10/100, CINIC-10) and heterogeneous data setup show that RepPer
outperforms alternatives in flexibility and personalization on non-IID data.
Related papers
- Personalized Federated Learning via Feature Distribution Adaptation [3.410799378893257]
Federated learning (FL) is a distributed learning framework that leverages commonalities between distributed client datasets to train a global model.
personalized federated learning (PFL) seeks to address this by learning individual models tailored to each client.
We propose an algorithm, pFedFDA, that efficiently generates personalized models by adapting global generative classifiers to their local feature distributions.
arXiv Detail & Related papers (2024-11-01T03:03:52Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Dirichlet-based Uncertainty Quantification for Personalized Federated
Learning with Improved Posterior Networks [9.54563359677778]
This paper presents a new approach to federated learning that allows selecting a model from global and personalized ones.
It is achieved through a careful modeling of predictive uncertainties that helps to detect local and global in- and out-of-distribution data.
The comprehensive experimental evaluation on the popular real-world image datasets shows the superior performance of the model in the presence of out-of-distribution data.
arXiv Detail & Related papers (2023-12-18T14:30:05Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Personalized Federated Learning through Local Memorization [10.925242558525683]
Federated learning allows clients to collaboratively learn statistical models while keeping their data local.
Recent personalized federated learning methods train a separate model for each client while still leveraging the knowledge available at other clients.
We show on a suite of federated datasets that this approach achieves significantly higher accuracy and fairness than state-of-the-art methods.
arXiv Detail & Related papers (2021-11-17T19:40:07Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
Federated Learning (FL) has recently emerged as a promising method to overcome data privacy and transmission issues.
In FL, datasets collected from different devices or sensors are used to train local models (clients) each of which shares its learning with a centralized model (server)
This paper proposes a novel Personalized FedAvg (PC-FedAvg) which aims to control weights communication and aggregation augmented with a tailored learning algorithm to personalize the resulting models at each client.
arXiv Detail & Related papers (2021-11-04T04:57:11Z) - Adapt to Adaptation: Learning Personalization for Cross-Silo Federated
Learning [6.0088002781256185]
Conventional federated learning aims to train a global model for a federation of clients with decentralized data.
The distribution shift across non-IID datasets, also known as the data heterogeneity, often poses a challenge for this one-global-model-fits-all solution.
We propose APPLE, a personalized cross-silo FL framework that adaptively learns how much each client can benefit from other clients' models.
arXiv Detail & Related papers (2021-10-15T22:23:14Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.