論文の概要: End-to-end Mapping in Heterogeneous Systems Using Graph Representation
Learning
- arxiv url: http://arxiv.org/abs/2204.11981v1
- Date: Mon, 25 Apr 2022 22:13:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-27 15:21:22.874502
- Title: End-to-end Mapping in Heterogeneous Systems Using Graph Representation
Learning
- Title(参考訳): グラフ表現学習を用いた異種システムのエンドツーエンドマッピング
- Authors: Yao Xiao, Guixiang Ma, Nesreen K. Ahmed, Mihai Capota, Theodore
Willke, Shahin Nazarian, Paul Bogdan
- Abstract要約: 本稿では,エンドツーエンドでプログラム可能なグラフ表現学習フレームワークを提案する。
高レベルのプログラムの複雑さを普遍的な中間表現にマイニングし、特定の計算パターンを抽出し、特定のコア上でどのコードセグメントがベストに動作するかを予測できる。
評価では、スレッドベースの実行と比較して最大速度が6.42倍、最先端技術と比較して2.02倍であることを示す。
- 参考スコア(独自算出の注目度): 13.810753108848582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To enable heterogeneous computing systems with autonomous programming and
optimization capabilities, we propose a unified, end-to-end, programmable graph
representation learning (PGL) framework that is capable of mining the
complexity of high-level programs down to the universal intermediate
representation, extracting the specific computational patterns and predicting
which code segments would run best on a specific core in heterogeneous hardware
platforms. The proposed framework extracts multi-fractal topological features
from code graphs, utilizes graph autoencoders to learn how to partition the
graph into computational kernels, and exploits graph neural networks (GNN) to
predict the correct assignment to a processor type. In the evaluation, we
validate the PGL framework and demonstrate a maximum speedup of 6.42x compared
to the thread-based execution, and 2.02x compared to the state-of-the-art
technique.
- Abstract(参考訳): 自動プログラミングと最適化機能を備えた異種コンピューティングシステムを実現するために,ハイレベルプログラムの複雑さを普遍的な中間表現にマイニングし,特定の計算パターンを抽出し,異種ハードウェアプラットフォーム内の特定のコア上でどのコードセグメントがベストに動作するかを予測できる,統一的でエンドツーエンドでプログラム可能なグラフ表現学習(PGL)フレームワークを提案する。
提案フレームワークは,コードグラフからマルチフラクタルトポロジ的特徴を抽出し,グラフオートエンコーダを用いてグラフを計算カーネルに分割する方法を学習し,グラフニューラルネットワーク(GNN)を用いてプロセッサタイプへの正しい割り当てを予測する。
評価では,PGLフレームワークを検証し,スレッドベースの実行と比較して最大速度が6.42倍,最先端技術と比較して2.02倍であることを示す。
関連論文リスト
- Differentiable Proximal Graph Matching [40.41380102260085]
微分可能近位グラフマッチング(DPGM)と呼ばれる近位演算子に基づくグラフマッチングアルゴリズムを提案する。
アルゴリズム全体をグラフ親和性行列からノード対応の予測への微分可能な写像とみなすことができる。
数値実験により、PGMは様々なデータセット上で既存のグラフマッチングアルゴリズムより優れていることが示された。
論文 参考訳(メタデータ) (2024-05-26T08:17:13Z) - A structure-aware framework for learning device placements on computation graphs [15.282882425920064]
本稿では,OpenVINOツールキットから抽出したより小さなグラフに頼って,デバイス配置作業のための新しいフレームワークを提案する。
このフレームワークは、グラフの粗大化、ノード表現学習、ポリシー最適化を含む5つのステップで構成されている。
3つのベンチマークモデルを用いた複数の実験により,提案手法の柔軟性と有効性を示す。
論文 参考訳(メタデータ) (2024-05-23T05:29:29Z) - Hector: An Efficient Programming and Compilation Framework for Implementing Relational Graph Neural Networks in GPU Architectures [24.841128441671234]
RGNNは、異種グラフ内の異なるタイプのノードとエッジをモデリングするための専用の構造を持つグラフニューラルネットワークである。
本稿では,新しい2レベル中間表現とコード生成フレームワークであるHectorを提案し,RGNNモデルの鍵となる特性を捉える。
Hectorは、最先端のパブリックシステムと比較して、推論で最大9.9倍、トレーニングで最大43.7倍のスピードアップを達成する。
論文 参考訳(メタデータ) (2023-01-16T06:53:18Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical
Graph Representation Learning [74.90535111881358]
新しい解釈可能なグラフプーリングフレームワークである CommPOOL を提案します。
グラフ表現学習プロセスにおいて、グラフの階層的なコミュニティ構造をキャプチャし、保存することができる。
CommPOOLは階層グラフ表現学習のための汎用的で柔軟なフレームワークです。
論文 参考訳(メタデータ) (2020-12-10T21:14:18Z) - ProGraML: Graph-based Deep Learning for Program Optimization and
Analysis [16.520971531754018]
本稿では,機械学習のためのグラフベースのプログラム表現であるProGraMLを紹介する。
ProGraMLは平均94.0F1スコアを獲得し、最先端のアプローチを著しく上回っている。
そして、我々のアプローチを2つのハイレベルなタスク - 不均一なデバイスマッピングとプログラム分類 - に適用し、その両方で新しい最先端のパフォーマンスを設定します。
論文 参考訳(メタデータ) (2020-03-23T20:27:00Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z) - GraphACT: Accelerating GCN Training on CPU-FPGA Heterogeneous Platforms [1.2183405753834562]
グラフ畳み込みネットワーク(GCN)は、グラフ上での表現学習のための最先端のディープラーニングモデルとして登場した。
実質的かつ不規則なデータ通信のため、GCNの訓練を加速することは困難である。
我々はCPU-FPGAヘテロジニアスシステム上でGCNをトレーニングするための新しいアクセラレータを設計する。
論文 参考訳(メタデータ) (2019-12-31T21:19:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。