Suggesting Relevant Questions for a Query Using Statistical Natural
Language Processing Technique
- URL: http://arxiv.org/abs/2204.12069v1
- Date: Tue, 26 Apr 2022 04:30:16 GMT
- Title: Suggesting Relevant Questions for a Query Using Statistical Natural
Language Processing Technique
- Authors: Shriniwas Nayak, Anuj Kanetkar, Hrushabh Hirudkar, Archana Ghotkar,
Sheetal Sonawane and Onkar Litake
- Abstract summary: Suggesting similar questions for a user query has many applications ranging from reducing search time of users on e-commerce websites, training of employees in companies to holistic learning for students.
The use of Natural Language Processing techniques for suggesting similar questions is prevalent over the existing architecture.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Suggesting similar questions for a user query has many applications ranging
from reducing search time of users on e-commerce websites, training of
employees in companies to holistic learning for students. The use of Natural
Language Processing techniques for suggesting similar questions is prevalent
over the existing architecture. Mainly two approaches are studied for finding
text similarity namely syntactic and semantic, however each has its draw-backs
and fail to provide the desired outcome. In this article, a self-learning
combined approach is proposed for determining textual similarity that
introduces a robust weighted syntactic and semantic similarity index for
determining similar questions from a predetermined database, this approach
learns the optimal combination of the mentioned approaches for a database under
consideration. Comprehensive analysis has been carried out to justify the
efficiency and efficacy of the proposed approach over the existing literature.
Related papers
- H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
This paper introduces a novel algorithm that integrates both symbolic and semantic (textual) approaches in a two-stage process to address limitations.
Our experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three question-answering (QA) and fact-verification datasets.
arXiv Detail & Related papers (2024-06-29T21:24:19Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
We propose to learn an ensemble by leveraging existing methods in a relation-aware manner.
exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods.
We propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently.
arXiv Detail & Related papers (2023-10-13T07:40:12Z) - Semantic Equivalence of e-Commerce Queries [6.232692545488813]
This paper introduces a framework to recognize and leverage query equivalence to enhance searcher and business outcomes.
The proposed approach addresses three key problems: mapping queries to vector representations of search intent, identifying nearest neighbor queries expressing equivalent or similar intent, and optimizing for user or business objectives.
arXiv Detail & Related papers (2023-08-07T18:40:13Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Semantic Search for Large Scale Clinical Ontologies [63.71950996116403]
We present a deep learning approach to build a search system for large clinical vocabularies.
We propose a Triplet-BERT model and a method that generates training data based on semantic training data.
The model is evaluated using five real benchmark data sets and the results show that our approach achieves high results on both free text to concept and concept to searching concept vocabularies.
arXiv Detail & Related papers (2022-01-01T05:15:42Z) - Conversational Recommendation: Theoretical Model and Complexity Analysis [6.084774669743511]
We present a theoretical, domain-independent model of conversational recommendation.
We show that finding an efficient conversational strategy is NP-hard.
We also show that catalog characteristics can strongly influence the efficiency of individual conversational strategies.
arXiv Detail & Related papers (2021-11-10T09:05:52Z) - Aspect-Oriented Summarization through Query-Focused Extraction [23.62412515574206]
Real users' needs often fall more closely into aspects, broad topics in a dataset the user is interested in rather than specific queries.
We benchmark extractive query-focused training schemes, and propose a contrastive augmentation approach to train the model.
We evaluate on two aspect-oriented datasets and find this approach yields focused summaries, better than those from a generic summarization system.
arXiv Detail & Related papers (2021-10-15T18:06:21Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z) - Leveraging Cognitive Search Patterns to Enhance Automated Natural
Language Retrieval Performance [0.0]
We show that cognitive reformulation patterns that mimic user search behaviour are highlighted.
We formalize the application of these patterns by considering a query conceptual representation.
A genetic algorithm-based weighting process allows placing emphasis on terms according to their conceptual role-type.
arXiv Detail & Related papers (2020-04-21T14:13:33Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
We present a conversational recommendation system based on a Bayesian approach.
A case study based on the application of this approach to emphstagend.com, an online platform for booking entertainers, is discussed.
arXiv Detail & Related papers (2020-02-12T15:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.