論文の概要: Social learning spontaneously emerges by searching optimal heuristics
with deep reinforcement learning
- arxiv url: http://arxiv.org/abs/2204.12371v1
- Date: Tue, 26 Apr 2022 15:10:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-27 15:13:52.828892
- Title: Social learning spontaneously emerges by searching optimal heuristics
with deep reinforcement learning
- Title(参考訳): 深層強化学習を用いた最適ヒューリスティックス探索による社会学習の創発
- Authors: Seungwoong Ha, Hawoong Jeong
- Abstract要約: 多次元ランドスケープにおける協調ゲームにおけるエージェントの社会的学習戦略を最適化するために、深層強化学習モデルを用いる。
エージェントは、コピー、頻繁で良好な隣人への焦点、自己比較、個人と社会学習のバランスの重要性など、社会的学習の様々な概念を自発的に学習する。
本研究では,時間的に変化する環境や実際のソーシャルネットワークなど,各種環境における強化学習エージェントの優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How have individuals of social animals in nature evolved to learn from each
other, and what would be the optimal strategy for such learning in a specific
environment? Here, we address both problems by employing a deep reinforcement
learning model to optimize the social learning strategies (SLSs) of agents in a
cooperative game in a multi-dimensional landscape. Throughout the training for
maximizing the overall payoff, we find that the agent spontaneously learns
various concepts of social learning, such as copying, focusing on frequent and
well-performing neighbors, self-comparison, and the importance of balancing
between individual and social learning, without any explicit guidance or prior
knowledge about the system. The SLS from a fully trained agent outperforms all
of the traditional, baseline SLSs in terms of mean payoff. We demonstrate the
superior performance of the reinforcement learning agent in various
environments, including temporally changing environments and real social
networks, which also verifies the adaptability of our framework to different
social settings.
- Abstract(参考訳): 自然界の社会動物の個人はどのようにして互いから学び合うように進化し、特定の環境で学ぶのに最適な戦略は何でしょう?
本稿では,多次元空間における協調ゲームにおけるエージェントの社会学習戦略(SLS)を最適化するために,深層強化学習モデルを用いることで,両問題に対処する。
全体の給与を最大化するためのトレーニングを通じて、エージェントは、コピー、頻繁で良好な隣人への焦点、自己比較、個人と社会の学習のバランスの重要性など、システムに関する明確なガイダンスや事前の知識なしに、自発的に社会学習の様々な概念を学習することを発見した。
完全に訓練されたエージェントからのslsは、従来のベースラインslsを平均的な給与で上回っている。
本研究では,環境の時間的変化や実際のソーシャルネットワークなど,様々な環境における強化学習エージェントの優れた性能を示すとともに,そのフレームワークの異なる社会的設定への適応性を検証する。
関連論文リスト
- Social Skill Training with Large Language Models [65.40795606463101]
人々は紛争解決のような社会的スキルに頼り、効果的にコミュニケーションし、仕事と個人の生活の両方で繁栄する。
本稿では,専門分野に進出する上での社会的スキルの障壁を明らかにする。
本稿では,大規模言語モデルを用いた総合的なフレームワークによるソーシャルスキルトレーニングのソリューションを提案する。
論文 参考訳(メタデータ) (2024-04-05T16:29:58Z) - Federated Learning of Socially Appropriate Agent Behaviours in Simulated
Home Environments [6.284099600214928]
社会ロボットは日々の生活にますます統合され、彼らの行動が社会的規範と整合することを保証することが不可欠である。
個々のロボットが独自の環境について学ぶことのできるフェデレートラーニング(FL)設定を探求することが重要である。
本稿では,複数ラベルの回帰目標を用いて,異なる戦略を評価する新しいFLベンチマークを提案する。
論文 参考訳(メタデータ) (2024-03-12T12:16:40Z) - Mathematics of multi-agent learning systems at the interface of game
theory and artificial intelligence [0.8049333067399385]
進化ゲーム理論と人工知能は、一見すると異なるように見える2つの分野であるが、それらは顕著なつながりと交差を持っている。
前者は集団における行動(または戦略)の進化に焦点を当て、個人が他人と対話し、模倣(または社会学習)に基づいて戦略を更新する。
一方後者は、機械学習アルゴリズムと(ディープ)ニューラルネットワークに重点を置いている。
論文 参考訳(メタデータ) (2024-03-09T17:36:54Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z) - Learning Roles with Emergent Social Value Orientations [49.16026283952117]
本稿では、人間社会における典型的な「労働・役割の分断」のメカニズムを紹介する。
我々は、社会的価値指向(SVO)を伴う時空間的社会的ジレンマ(ISD)に対する有望な解決策を提供する。
創発的SVOによる学習ロール(RESVO)と呼ばれる新しい学習フレームワークは、役割の学習を社会的価値指向の出現に変換するために提案されている。
論文 参考訳(メタデータ) (2023-01-31T17:54:09Z) - Improved cooperation by balancing exploration and exploitation in
intertemporal social dilemma tasks [2.541277269153809]
本研究では,探索と搾取のバランスをとることができる学習率を組み込むことで協調を達成するための新たな学習戦略を提案する。
簡単な戦略を駆使したエージェントは、時間的社会的ジレンマと呼ばれる意思決定タスクにおいて、相対的に集団的リターンを改善する。
また、学習率の多様性が強化学習エージェントの人口に与える影響についても検討し、異種集団で訓練されたエージェントが特に協調した政策を発達させることを示す。
論文 参考訳(メタデータ) (2021-10-19T08:40:56Z) - Emergent Social Learning via Multi-agent Reinforcement Learning [91.57176641192771]
社会学習は、人間と動物の知性の重要な構成要素である。
本稿では,独立系強化学習エージェントが,社会的学習を用いてパフォーマンスを向上させることを学べるかどうかを検討する。
論文 参考訳(メタデータ) (2020-10-01T17:54:14Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
政治外学習の最近の進歩の上に構築された,概念的にシンプルで,汎用的で,モジュール的な補完的アプローチについて検討する。
このフレームワークは確率論的推論文学のアイデアにインスパイアされ、堅牢な非政治学習と事前の行動を組み合わせる。
提案手法は,メタ強化学習ベースラインと比較して,ホールドアウトタスクにおける競合適応性能を実現し,複雑なスパース・リワードシナリオにスケールすることができる。
論文 参考訳(メタデータ) (2020-09-10T14:16:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。