論文の概要: Quantum control of molecules for fundamental physics
- arxiv url: http://arxiv.org/abs/2204.12373v1
- Date: Tue, 26 Apr 2022 15:12:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 12:06:13.792963
- Title: Quantum control of molecules for fundamental physics
- Title(参考訳): 基本物理のための分子の量子制御
- Authors: D. Mitra, K. H. Leung, T. Zelevinsky
- Abstract要約: レーザー冷却、トラップ、原子のコヒーレントな操作は、この特別な制御を分子にまで拡張する努力を加速させた。
量子状態の制御は、標準モデルを超えた基本定数や可能な物理学への例外のないアクセスを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The extraordinary success in laser cooling, trapping, and coherent
manipulation of atoms has energized the efforts in extending this exquisite
control to molecules. Not only are molecules ubiquitous in nature, but the
control of their quantum states offers unparalleled access to fundamental
constants and possible physics beyond the Standard Model. Quantum state
manipulation of molecules can enable high-precision measurements including
tests of fundamental symmetries and searches for new particles and fields. At
the same time, their complex internal structure presents experimental
challenges to overcome in order to gain sensitivity to new physics. In this
Perspective, we review recent developments in this thriving new field.
Moreover, throughout the text we discuss many current and future research
directions that have the potential to place molecules at the forefront of
fundamental science.
- Abstract(参考訳): レーザー冷却、トラップ、コヒーレントな原子操作の成功は、この精巧な制御を分子に拡張する努力を促した。
自然界において分子はユビキタスであるだけでなく、それらの量子状態の制御は、標準モデルを超えた基本定数や物理への非平行なアクセスを提供する。
分子の量子状態操作は、基本対称性のテストや新しい粒子やフィールドの探索を含む高精度な測定を可能にする。
同時に、それらの複雑な内部構造は、新しい物理学への感受性を得るために克服すべき実験的な課題を示す。
本稿では,本分野における最近の展開を概観する。
さらに、本文を通じて、分子を基礎科学の最前線に配置する可能性を持つ多くの現在および将来の研究方向について論じる。
関連論文リスト
- Molecular Quantum Control Algorithm Design by Reinforcement Learning [0.0]
分子イオンを1つの純粋な量子状態に合成する汎用的,強化学習設計の量子論理手法を提案する。
制御アルゴリズムの性能はCaH$+$イオンの場合で数値的に示され、96個の固有状態を持つ。
論文 参考訳(メタデータ) (2024-10-15T17:59:06Z) - Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
電子レンジ駆動型エンタングリングゲートの2分子間の最初の実現について述べる。
この魔法の波長トラップは、0.5秒以上の測定可能な減衰を伴わず、絡み合いを保っていることを示す。
複雑な分子系への精密な量子制御の拡張により、量子科学の多くの領域にまたがる追加の自由度が利用できるようになる。
論文 参考訳(メタデータ) (2024-08-27T09:28:56Z) - Quantum sensing with atomic, molecular, and optical platforms for fundamental physics [0.611309374994742]
基礎物理学と新しい応用のための説得力のある長期的なビジョンは、量子情報科学の急速な発展を活用することであると我々は主張する。
我々は、重力の量子的側面、基本的な対称性など、最も興味深く挑戦的な問題のいくつかが、新たな量子計測フロンティアで取り組まれることを期待している。
論文 参考訳(メタデータ) (2024-05-07T20:56:20Z) - An optical tweezer array of ultracold polyatomic molecules [0.0]
我々は、内部量子状態を量子制御した個々の多原子分子であるCaOHの光学的ツイーザーアレイを作成する。
CaOHの複雑な量子構造は、分子の振る舞いをツイーザー光波長に非自明に依存させる。
我々は、この相互作用を制御し、90%の忠実度を持つツイーザーアレイ内の直接的および非破壊的な個々の分子を画像化する。
論文 参考訳(メタデータ) (2023-11-13T18:15:41Z) - Molecular-ion quantum technologies [0.0]
量子レベルでの分子イオンをコトラップされた原子イオンを介して制御する能力は、新しい実験に興味深い可能性を与える。
本稿では,本分野における基礎実験方法,最近の展開,今後の展望について概説する。
論文 参考訳(メタデータ) (2022-04-19T11:30:19Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
量子システムの分離・制御・絡み合いの進歩は、かつての量子力学の興味深い特徴を、破壊的な科学的・技術的進歩のための乗り物へと変えつつある。
本稿では,3つの領域科学理論家の視点から,絡み合い,複雑性,量子シミュレーションのインターフェースについて考察する。
論文 参考訳(メタデータ) (2021-07-10T06:12:06Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
デジタル量子コンピュータ(DQC)は、古典的コンピュータでは引き起こせない量子シミュレーションを効率的に行うことができる。
このレビューの目的は、物理量子優位性を達成するために行われた進歩の要約を提供することである。
論文 参考訳(メタデータ) (2021-01-21T20:10:38Z) - A Chirality-Based Quantum Leap [46.53135635900099]
キラル自由度は、物質や電磁場において起こる。
キラル分子およびナノマテリアルにおけるキラル誘起スピン選択性(CISS)効果の最近の観察
論文 参考訳(メタデータ) (2020-08-31T22:47:39Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
ナノスケールでのスピンの電気的制御は、スピントロニクスのアーキテクチャ上の利点を提供する。
分子スピン材料における電場(E-場)感度の最近の実証が注目されている。
これまでに報告された電子場感度はかなり弱く、より強いスピン電結合を持つ分子をどうやって設計するかという問題を引き起こした。
論文 参考訳(メタデータ) (2020-05-03T09:27:31Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
位相量子相は現代物理学の多くの概念の根底にある。
ここでは、トポロジカルエッジ状態、スペクトルランダウレベル、ホフスタッターバタフライを持つ量子ホール相が、単純な量子系に出現することを明らかにする。
このようなシステムでは、古典的なディックモデルによって記述されている光に結合した2レベル原子(量子ビット)の配列が、最近、低温原子と超伝導量子ビットによる実験で実現されている。
論文 参考訳(メタデータ) (2020-03-18T14:56:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。