論文の概要: Federated Progressive Sparsification (Purge, Merge, Tune)+
- arxiv url: http://arxiv.org/abs/2204.12430v1
- Date: Tue, 26 Apr 2022 16:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-27 13:52:58.944983
- Title: Federated Progressive Sparsification (Purge, Merge, Tune)+
- Title(参考訳): Federated Progressive Sparsification (Purge, Merge, Tune)+
- Authors: Dimitris Stripelis, Umang Gupta, Greg Ver Steeg, Jose Luis Ambite
- Abstract要約: FedSparsifyは、プログレッシブ・ウェイト・マグニチュード・プルーニングに基づくスパーシフィケーション戦略である。
我々は,FedSparsifyが高空間性と学習性能の両方のサブネットワークを学習できることを実験的に示す。
- 参考スコア(独自算出の注目度): 15.08232397899507
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To improve federated training of neural networks, we develop FedSparsify, a
sparsification strategy based on progressive weight magnitude pruning. Our
method has several benefits. First, since the size of the network becomes
increasingly smaller, computation and communication costs during training are
reduced. Second, the models are incrementally constrained to a smaller set of
parameters, which facilitates alignment/merging of the local models and
improved learning performance at high sparsification rates. Third, the final
sparsified model is significantly smaller, which improves inference efficiency
and optimizes operations latency during encrypted communication. We show
experimentally that FedSparsify learns a subnetwork of both high sparsity and
learning performance. Our sparse models can reach a tenth of the size of the
original model with the same or better accuracy compared to existing pruning
and nonpruning baselines.
- Abstract(参考訳): ニューラルネットワークのフェデレートトレーニングを改善するために,プログレッシブウェイトマグニチュードプルーニングに基づくスパシフィケーション戦略であるFedSparsifyを開発した。
我々の方法にはいくつかの利点がある。
まず、ネットワークのサイズが小さくなるにつれて、トレーニング中の計算コストと通信コストが削減される。
第二に、モデルは小さなパラメータセットに漸進的に制約され、局所モデルのアライメント/マージが容易になり、高いスパシフィケーションレートで学習性能が向上する。
第三に、最後のスカラー化モデルはかなり小さく、推論効率を改善し、暗号化通信時の動作遅延を最適化する。
我々は,FedSparsifyが高空間性と学習性能の両方のサブネットワークを学習できることを実験的に示す。
我々のスパースモデルは、既存のプルーニングや非プルーニングのベースラインと比較して、同じまたはより良い精度で元のモデルの10分の1に達することができる。
関連論文リスト
- UniPTS: A Unified Framework for Proficient Post-Training Sparsity [67.16547529992928]
Post-Traiing Sparsity (PTS)は、必要な限られたデータで効率的なネットワークスパシティを追求する、新たに登場した道である。
本稿では,従来のスパシティの性能をPSSの文脈に大きく変化させる3つの基本因子を変換することで,この相違を解消しようとする。
我々のフレームワークはUniPTSと呼ばれ、広範囲のベンチマークで既存のPTSメソッドよりも優れていることが検証されている。
論文 参考訳(メタデータ) (2024-05-29T06:53:18Z) - Relearning Forgotten Knowledge: on Forgetting, Overfit and Training-Free
Ensembles of DNNs [9.010643838773477]
本稿では,検証データ上での深層モデルの忘れ度をモニタする,過剰適合度定量化のための新しいスコアを提案する。
オーバーフィットは検証精度を低下させることなく発生しうることを示し,従来よりも一般的である可能性が示唆された。
我々は,1つのネットワークのトレーニング履歴のみに基づいて,新たなアンサンブル法を構築するために,我々の観測結果を用いて,トレーニング時間に追加のコストを要さず,大幅な改善を実現する。
論文 参考訳(メタデータ) (2023-10-17T09:22:22Z) - Distributed Pruning Towards Tiny Neural Networks in Federated Learning [12.63559789381064]
FedTinyは、フェデレートラーニングのための分散プルーニングフレームワークである。
メモリとコンピューティングに制約のあるデバイスのための、特殊な小さなモデルを生成する。
2.61%の精度向上を実現し、計算コストを95.91%削減した。
論文 参考訳(メタデータ) (2022-12-05T01:58:45Z) - Slimmable Networks for Contrastive Self-supervised Learning [69.9454691873866]
自己教師付き学習は、大規模なモデルを事前訓練する上で大きな進歩を遂げるが、小さなモデルでは苦労する。
追加の教師を必要とせず、訓練済みの小型モデルを得るための1段階のソリューションも導入する。
スリム化可能なネットワークは、完全なネットワークと、様々なネットワークを得るために一度にトレーニングできるいくつかの重み共有サブネットワークから構成される。
論文 参考訳(メタデータ) (2022-09-30T15:15:05Z) - Towards Sparsified Federated Neuroimaging Models via Weight Pruning [13.0319103091844]
FedSparsifyは、フェデレートトレーニング中にモデルプルーニングを実行する。
性能に影響を与えることなく、95%の間隔でモデルを刈り取ることができることを示す。
モデルプルーニングの驚くべきメリットのひとつは、モデルのプライバシを改善することだ。
論文 参考訳(メタデータ) (2022-08-24T17:05:47Z) - ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training [65.68511423300812]
本稿では,効率的なフェデレート学習のためのプログレッシブトレーニングフレームワークであるProgFedを提案する。
ProgFedは計算と双方向通信のコストを本質的に低減し、最終モデルの強力な性能を維持している。
以上の結果から, ProgFed はフルモデルの標準トレーニングと同等の速度で収束することがわかった。
論文 参考訳(メタデータ) (2021-10-11T14:45:00Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z) - Sparsity in Deep Learning: Pruning and growth for efficient inference
and training in neural networks [78.47459801017959]
Sparsityは、モバイル機器に適合する通常のネットワークのメモリフットプリントを減らすことができる。
ニューラルネットワークの要素を除去および追加するためのアプローチ、モデルの疎性を達成するための異なるトレーニング戦略、実際に疎性を利用するメカニズムについて説明する。
論文 参考訳(メタデータ) (2021-01-31T22:48:50Z) - HALO: Learning to Prune Neural Networks with Shrinkage [5.283963846188862]
ディープニューラルネットワークは、構造化されていないデータから豊富な特徴セットを抽出することにより、さまざまなタスクで最先端のパフォーマンスを実現する。
提案手法は,(1)ネットワークプルーニング,(2)スパシティ誘導ペナルティによるトレーニング,(3)ネットワークの重みと連動してバイナリマスクをトレーニングすることである。
トレーニング可能なパラメータを用いて、与えられたネットワークの重みを適応的に分散化することを学ぶ階層適応ラッソ(Hierarchical Adaptive Lasso)という新しいペナルティを提案する。
論文 参考訳(メタデータ) (2020-08-24T04:08:48Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。