Meta-free representation learning for few-shot learning via stochastic
weight averaging
- URL: http://arxiv.org/abs/2204.12466v1
- Date: Tue, 26 Apr 2022 17:36:34 GMT
- Title: Meta-free representation learning for few-shot learning via stochastic
weight averaging
- Authors: Kuilin Chen, Chi-Guhn Lee
- Abstract summary: Recent studies on few-shot classification using transfer learning pose challenges to the effectiveness and efficiency of episodic meta-learning algorithms.
We propose a new transfer learning method to obtain accurate and reliable models for few-shot regression and classification.
- Score: 13.6555672824229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies on few-shot classification using transfer learning pose
challenges to the effectiveness and efficiency of episodic meta-learning
algorithms. Transfer learning approaches are a natural alternative, but they
are restricted to few-shot classification. Moreover, little attention has been
on the development of probabilistic models with well-calibrated uncertainty
from few-shot samples, except for some Bayesian episodic learning algorithms.
To tackle the aforementioned issues, we propose a new transfer learning method
to obtain accurate and reliable models for few-shot regression and
classification. The resulting method does not require episodic meta-learning
and is called meta-free representation learning (MFRL). MFRL first finds
low-rank representation generalizing well on meta-test tasks. Given the learned
representation, probabilistic linear models are fine-tuned with few-shot
samples to obtain models with well-calibrated uncertainty. The proposed method
not only achieves the highest accuracy on a wide range of few-shot learning
benchmark datasets but also correctly quantifies the prediction uncertainty. In
addition, weight averaging and temperature scaling are effective in improving
the accuracy and reliability of few-shot learning in existing meta-learning
algorithms with a wide range of learning paradigms and model architectures.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - Gradient-Based Meta-Learning Using Uncertainty to Weigh Loss for
Few-Shot Learning [5.691930884128995]
Model-Agnostic Meta-Learning (MAML) is one of the most successful meta-learning techniques for few-shot learning.
New method is proposed for task-specific learner adaptively learn to select parameters that minimize the loss of new tasks.
Method 1 generates weights by comparing meta-loss differences to improve the accuracy when there are few classes.
Method 2 introduces the homoscedastic uncertainty of each task to weigh multiple losses based on the original gradient descent.
arXiv Detail & Related papers (2022-08-17T08:11:51Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data.
We experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning.
arXiv Detail & Related papers (2022-06-16T11:44:11Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - B-SMALL: A Bayesian Neural Network approach to Sparse Model-Agnostic
Meta-Learning [2.9189409618561966]
We propose a Bayesian neural network based MAML algorithm, which we refer to as the B-SMALL algorithm.
We demonstrate the performance of B-MAML using classification and regression tasks, and highlight that training a sparsifying BNN using MAML indeed improves the parameter footprint of the model.
arXiv Detail & Related papers (2021-01-01T09:19:48Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.