AI-Assisted Authentication: State of the Art, Taxonomy and Future
Roadmap
- URL: http://arxiv.org/abs/2204.12492v1
- Date: Mon, 25 Apr 2022 21:16:55 GMT
- Title: AI-Assisted Authentication: State of the Art, Taxonomy and Future
Roadmap
- Authors: Guangyi Zhu and Yasir Al-Qaraghuli
- Abstract summary: This paper focuses on the applications of artificial intelligence in authentication.
With the emerging AI-assisted authentication schemes, our survey provides an overall understanding on a high level.
In contrast to other relevant surveys, our research is the first of its kind to focus on the roles of AI in authentication.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) has found its applications in a variety of
environments ranging from data science to cybersecurity. AI helps break through
the limitations of traditional algorithms and provides more efficient and
flexible methods for solving problems. In this paper, we focus on the
applications of artificial intelligence in authentication, which is used in a
wide range of scenarios including facial recognition to access buildings,
keystroke dynamics to unlock smartphones. With the emerging AI-assisted
authentication schemes, our comprehensive survey provides an overall
understanding on a high level, which paves the way for future research in this
area. In contrast to other relevant surveys, our research is the first of its
kind to focus on the roles of AI in authentication.
Related papers
- Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
The study critically examined the current state and future trajectory of generative Artificial Intelligence (AI)
It explored how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains.
The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare.
arXiv Detail & Related papers (2023-12-18T01:11:39Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - An Empirical Study of AI Techniques in Mobile Applications [10.43634556488264]
We conducted the most extensive empirical study on AI applications, exploring on-device ML apps, on-device DL apps, and AI service-supported (cloud-based) apps.
Our study has strong implications for AI app developers, users, and AI R&D.
arXiv Detail & Related papers (2022-12-03T15:31:34Z) - A Comprehensive Study on Artificial Intelligence Algorithms to Implement
Safety Using Communication Technologies [1.2710179245406195]
The study aims at providing a comprehensive picture of the state of the art AI based safety solutions that uses different communication technologies.
The results demonstrate that automotive domain is the one applying AI and communication the most to implement safety.
The use of non-cellular communication technologies is dominant however a clear trend of a rapid increase in the use of cellular communication is observed specially from 2020 with the roll-out of 5G technology.
arXiv Detail & Related papers (2022-05-17T14:38:38Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Measuring Ethics in AI with AI: A Methodology and Dataset Construction [1.6861004263551447]
We propose to use such newfound capabilities of AI technologies to augment our AI measuring capabilities.
We do so by training a model to classify publications related to ethical issues and concerns.
We highlight the implications of AI metrics, in particular their contribution towards developing trustful and fair AI-based tools and technologies.
arXiv Detail & Related papers (2021-07-26T00:26:12Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Physically Unclonable Functions and AI: Two Decades of Marriage [7.601937548486356]
The main focus here is to explore the methods borrowed from AI to assess the security of a hardware primitive.
By reviewing PUFs designed by applying AI techniques, we give insight into future research directions.
arXiv Detail & Related papers (2020-08-26T02:53:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.