論文の概要: Parkinson's disease diagnostics using AI and natural language knowledge
transfer
- arxiv url: http://arxiv.org/abs/2204.12559v1
- Date: Tue, 26 Apr 2022 19:39:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-28 12:15:23.765932
- Title: Parkinson's disease diagnostics using AI and natural language knowledge
transfer
- Title(参考訳): aiと自然言語知識伝達を用いたパーキンソン病の診断
- Authors: Maurycy Chronowski, Maciej Klaczynski, Malgorzata Dec-Cwiek, Karolina
Porebska
- Abstract要約: PDと診断された症例における生音声の分類のための深層学習手法を提案する。
対象は, PD患者38名, 健常者10名で, 50歳以上であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, the issue of Parkinson's disease (PD) diagnostics using
non-invasive antemortem techniques was tackled. A deep learning approach for
classification of raw speech recordings in patients with diagnosed PD was
proposed. The core of proposed method is an audio classifier using knowledge
transfer from a pretrained natural language model, namely \textit{wav2vec 2.0}.
Method was tested on a group of 38 PD patients and 10 healthy persons above the
age of 50. A dataset of speech recordings acquired using a smartphone recorder
was constructed and the recordings were label as PD/non-PD with severity of the
disease additionally rated using Hoehn-Yahr scale. The audio recordings were
cut into 2141 samples that include sentences, syllables, vowels and sustained
phonation. The classifier scores up to 97.92\% of cross-validated accuracy.
Additionally, paper presents results of a human-level performance assessment
questionnaire, which was consulted with the neurology professionals
- Abstract(参考訳): 本研究では,非侵襲的アテマルテム技術を用いたパーキンソン病(pd)診断の課題に取り組んだ。
pdと診断された症例の生音声記録分類のための深層学習手法を提案した。
提案手法の核となるのは,事前学習された自然言語モデルからの知識伝達を用いた音声分類器である。
対象は, PD患者38名, 健常者10名で, 50歳以上であった。
スマートフォンレコーダを用いて取得した音声記録のデータセットを構築し,Hoehn-Yahr 尺度で評価した疾患の重篤度でPD/non-PDとラベル付けした。
音声録音は2141のサンプルに切り分けられ、文、音節、母音、持続音節が含まれていた。
分類器のスコアは97.92 %までである。
また,神経学の専門家に相談した人間レベルのパフォーマンス評価アンケートの結果も提示する。
関連論文リスト
- Self-supervised Speech Models for Word-Level Stuttered Speech Detection [66.46810024006712]
自己教師付き音声モデルを利用した単語レベルの発声音声検出モデルを提案する。
本評価は, 単語レベルの発声検出において, 従来の手法を超越していることを示す。
論文 参考訳(メタデータ) (2024-09-16T20:18:20Z) - NeuroVoz: a Castillian Spanish corpus of parkinsonian speech [36.23298373892936]
NeuroVozは、平均26.88 pm 3.35$のオーディオ録音2,903枚で構成されている。
このデータセットは、すでにいくつかの研究を基盤にしており、PD音声パターン識別のベンチマーク精度は89%に達している。
論文 参考訳(メタデータ) (2024-03-04T16:17:39Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
本研究の目的は,言語習得の分野で開発された信号処理algorithmの関連性を評価することである。
論文 参考訳(メタデータ) (2023-08-09T07:51:40Z) - Exploring Multimodal Approaches for Alzheimer's Disease Detection Using
Patient Speech Transcript and Audio Data [10.782153332144533]
アルツハイマー病(英語: Alzheimer's disease、AD)は、認知症の一種であり、患者の健康に深刻な影響を及ぼす。
本研究では,DmentiaBank Pittデータベースから患者の音声と転写データを用いたAD検出法について検討した。
論文 参考訳(メタデータ) (2023-07-05T12:40:11Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
アルツハイマー病(AD)の早期診断は予防ケアの促進とさらなる進行の遅らせに不可欠である。
本稿では,AD分類誤差をトレーニング対象関数として一貫して用いたPLMの高速微調整法について検討する。
論文 参考訳(メタデータ) (2022-10-29T09:18:41Z) - Decoding speech perception from non-invasive brain recordings [48.46819575538446]
非侵襲的な記録から知覚音声の自己教師付き表現をデコードするために、コントラスト学習で訓練されたモデルを導入する。
我々のモデルでは、3秒のMEG信号から、1,000以上の異なる可能性から最大41%の精度で対応する音声セグメントを識別できる。
論文 参考訳(メタデータ) (2022-08-25T10:01:43Z) - Investigation of Data Augmentation Techniques for Disordered Speech
Recognition [69.50670302435174]
本稿では,不規則音声認識のための一連のデータ拡張手法について検討する。
正常な音声と無秩序な音声の両方が増強過程に利用された。
UASpeechコーパスを用いた最終話者適応システムと、最大2.92%の絶対単語誤り率(WER)の速度摂動に基づく最良の拡張アプローチ
論文 参考訳(メタデータ) (2022-01-14T17:09:22Z) - The Phonetic Footprint of Parkinson's Disease [16.64383793837174]
パーキンソン病(PD)は患者の運動能力に重大な影響を及ぼす。
母音の不安定性、スラリー発音、遅い発声などの特徴パターンは、影響を受けた個人によく見られる。
健常者を対象に訓練した音声認識器を用いて, PDが患者の音声足跡に与える影響について検討した。
論文 参考訳(メタデータ) (2021-12-21T20:44:21Z) - Parkinsonian Chinese Speech Analysis towards Automatic Classification of
Parkinson's Disease [31.431256876809343]
パーキンソン病(PD)の早期に発する発声障害
中国語の音声コーパスを新たに構築し,PD患者の分類について検討した。
我々の分類精度は最先端の研究をはるかに上回った。
論文 参考訳(メタデータ) (2021-05-31T04:51:44Z) - NUVA: A Naming Utterance Verifier for Aphasia Treatment [49.114436579008476]
失語症(PWA)患者の治療介入に対する反応の診断とモニタリングの両立のための画像命名タスクを用いた音声性能評価
本稿では,失語症脳卒中患者の「正しい」と「正しくない」を分類する深層学習要素を組み込んだ発話検証システムであるNUVAについて述べる。
イギリス系英語8ヶ国語でのテストでは、システムの性能精度は83.6%から93.6%の範囲であり、10倍のクロスバリデーション平均は89.5%であった。
論文 参考訳(メタデータ) (2021-02-10T13:00:29Z) - Multi-Modal Detection of Alzheimer's Disease from Speech and Text [3.702631194466718]
本稿では,アルツハイマー病(AD)の診断に音声と対応する文字を同時に利用する深層学習手法を提案する。
提案手法は,Dementiabank Pitt corpus のトレーニングおよび評価において,85.3%のクロスバリデーション精度を実現する。
論文 参考訳(メタデータ) (2020-11-30T21:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。