論文の概要: An Empirical Evaluation of Flow Based Programming in the Machine
Learning Deployment Context
- arxiv url: http://arxiv.org/abs/2204.12781v1
- Date: Wed, 27 Apr 2022 09:08:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-28 14:21:13.779078
- Title: An Empirical Evaluation of Flow Based Programming in the Machine
Learning Deployment Context
- Title(参考訳): 機械学習展開文脈におけるフローベースプログラミングの実証評価
- Authors: Andrei Paleyes, Christian Cabrera, Neil D. Lawrence
- Abstract要約: データ指向アーキテクチャ(DOA)は,課題に対処する上で,データサイエンティストやソフトウェア開発者を支援する,新たなアプローチである。
本稿では,フローベースプログラミング(FBP)をDOAアプリケーション作成のパラダイムとして考える。
我々は、典型的なデータサイエンスプロジェクトを表す4つのアプリケーション上で、MLデプロイメントの文脈において、FBPを実証的に評価する。
- 参考スコア(独自算出の注目度): 11.028123436097616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As use of data driven technologies spreads, software engineers are more often
faced with the task of solving a business problem using data-driven methods
such as machine learning (ML) algorithms. Deployment of ML within large
software systems brings new challenges that are not addressed by standard
engineering practices and as a result businesses observe high rate of ML
deployment project failures. Data Oriented Architecture (DOA) is an emerging
approach that can support data scientists and software developers when
addressing such challenges. However, there is a lack of clarity about how DOA
systems should be implemented in practice. This paper proposes to consider
Flow-Based Programming (FBP) as a paradigm for creating DOA applications. We
empirically evaluate FBP in the context of ML deployment on four applications
that represent typical data science projects. We use Service Oriented
Architecture (SOA) as a baseline for comparison. Evaluation is done with
respect to different application domains, ML deployment stages, and code
quality metrics. Results reveal that FBP is a suitable paradigm for data
collection and data science tasks, and is able to simplify data collection and
discovery when compared with SOA. We discuss the advantages of FBP as well as
the gaps that need to be addressed to increase FBP adoption as a standard
design paradigm for DOA.
- Abstract(参考訳): データ駆動技術が普及するにつれて、ソフトウェアエンジニアは機械学習(ML)アルゴリズムのようなデータ駆動手法を使用してビジネス問題を解決するタスクに直面していることが多い。
大規模なソフトウェアシステムへのMLのデプロイは、標準的なエンジニアリングプラクティスによって対処されない新たな課題をもたらし、結果として、ビジネスはMLデプロイメントプロジェクトの失敗の頻度を観察する。
データ指向アーキテクチャ(DOA、Data Oriented Architecture)は、データサイエンティストやソフトウェア開発者を支援する新しいアプローチである。
しかし、DOAシステムが実際にどのように実装されるべきかについては明確になっていない。
本稿では,フローベースプログラミング(FBP)をDOAアプリケーション作成のパラダイムとして考える。
我々は、典型的なデータサイエンスプロジェクトを表す4つのアプリケーション上で、MLデプロイメントの文脈において、FBPを実証的に評価する。
サービス指向アーキテクチャ(SOA)をベースラインとして使用しています。
評価は、さまざまなアプリケーションドメイン、MLデプロイメントステージ、コード品質メトリクスに関して行われます。
その結果、FBPはデータ収集やデータサイエンスのタスクに適したパラダイムであり、SOAと比較するとデータ収集と発見をシンプルにすることができます。
DOAの標準設計パラダイムとしてFBPの採用を促進するために、FBPの利点と対処すべきギャップについて論じる。
関連論文リスト
- Multi-agent Planning using Visual Language Models [2.2369578015657954]
大規模言語モデル(LLM)とビジュアル言語モデル(VLM)は、様々なドメインやタスクにわたるパフォーマンスとアプリケーションの改善により、関心を集めている。
LLMとVLMは、特に問題領域の深い理解が必要な場合、誤った結果をもたらす。
本稿では,特定のデータ構造を入力として必要とせずに動作可能なマルチエージェント型タスクプランニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-08-10T08:10:17Z) - Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。
Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。
これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (2024-07-15T17:54:37Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Machine learning in business process management: A systematic literature review [0.0]
機械学習(ML)は、明示的にプログラムすることなく、データに基づいてコンピュータプログラムを作成するアルゴリズムを提供する。
MLを使用する3つの頻繁な例は、予測による意思決定のサポート、正確なプロセスモデルの検出、リソース割り当ての改善である。
この研究は、BPMでMLがどのように使われているかについて、初めての徹底的なレビューである。
論文 参考訳(メタデータ) (2024-05-26T01:12:24Z) - Automated Program Repair: Emerging trends pose and expose problems for benchmarks [7.437224586066947]
大規模言語モデル(LLM)はソフトウェアパッチの生成に使用される。
評価と比較は、結果が有効であり、一般化する可能性が高いことを保証するために注意する必要があります。
大規模かつしばしば開示されていないトレーニングデータセットには、評価される問題が含まれている可能性がある。
論文 参考訳(メタデータ) (2024-05-08T23:09:43Z) - Wildest Dreams: Reproducible Research in Privacy-preserving Neural
Network Training [2.853180143237022]
この作業は、ユーザデータのプライバシを維持することが最も重要であるMLモデルのトレーニングフェーズに重点を置いている。
我々は、現在のアプローチの理解を容易にする、しっかりとした理論的背景を提供する。
我々は,いくつかの論文の成果を再現し,その分野における既存の研究がオープンサイエンスを支援するレベルについて検討する。
論文 参考訳(メタデータ) (2024-03-06T10:25:36Z) - Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach [58.911515417156174]
我々は情報時代(AoI)の新たな定義を提案し、再定義されたAoIに基づいて、MECシステムにおけるオンラインAoI問題を定式化する。
本稿では,システム力学の部分的知識を活用するために,PDS(Post-Decision State)を導入する。
また、PSDと深いRLを組み合わせることで、アルゴリズムの適用性、スケーラビリティ、堅牢性をさらに向上します。
論文 参考訳(メタデータ) (2023-12-01T01:30:49Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Exploring the potential of flow-based programming for machine learning
deployment in comparison with service-oriented architectures [8.677012233188968]
理由のひとつは、データ収集と分析に関するアクティビティのために設計されていないインフラストラクチャである、と私たちは論じています。
本稿では,データストリームを用いたフローベースのプログラミングを,ソフトウェアアプリケーション構築に広く使用されるサービス指向アーキテクチャの代替として検討する。
論文 参考訳(メタデータ) (2021-08-09T15:06:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。