論文の概要: Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?
- arxiv url: http://arxiv.org/abs/2406.13121v1
- Date: Wed, 19 Jun 2024 00:28:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 23:48:36.353947
- Title: Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?
- Title(参考訳): Long-Context Language Models Subsume Retrieval, RAG, SQLなどなどは可能か?
- Authors: Jinhyuk Lee, Anthony Chen, Zhuyun Dai, Dheeru Dua, Devendra Singh Sachan, Michael Boratko, Yi Luan, Sébastien M. R. Arnold, Vincent Perot, Siddharth Dalmia, Hexiang Hu, Xudong Lin, Panupong Pasupat, Aida Amini, Jeremy R. Cole, Sebastian Riedel, Iftekhar Naim, Ming-Wei Chang, Kelvin Guu,
- Abstract要約: 長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
- 参考スコア(独自算出の注目度): 54.667202878390526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases. Leveraging LCLMs' ability to natively ingest and process entire corpora of information offers numerous advantages. It enhances user-friendliness by eliminating the need for specialized knowledge of tools, provides robust end-to-end modeling that minimizes cascading errors in complex pipelines, and allows for the application of sophisticated prompting techniques across the entire system. To assess this paradigm shift, we introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning. Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks. However, LCLMs still face challenges in areas like compositional reasoning that are required in SQL-like tasks. Notably, prompting strategies significantly influence performance, emphasizing the need for continued research as context lengths grow. Overall, LOFT provides a rigorous testing ground for LCLMs, showcasing their potential to supplant existing paradigms and tackle novel tasks as model capabilities scale.
- Abstract(参考訳): 長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
情報コーパス全体をネイティブに取り込み、処理するLCLMの能力を活用することは、多くの利点をもたらす。
ツールの専門知識を不要にすることでユーザフレンドリさを高め、複雑なパイプラインのカスケードエラーを最小限に抑える堅牢なエンドツーエンドモデリングを提供し、システム全体にわたって高度なプロンプト技術の適用を可能にします。
このパラダイムシフトを評価するために,実世界のタスクのベンチマークであるLOFTを紹介した。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
しかしLCLMは、SQLのようなタスクで必要とされる構成的推論のような領域で依然として課題に直面している。
特に、戦略の推進はパフォーマンスに大きな影響を与え、文脈の長さが大きくなるにつれて継続的な研究の必要性を強調している。
全体として、LOFTはLCLMの厳格なテスト基盤を提供し、既存のパラダイムを代替し、モデル能力のスケールとして新しいタスクに取り組む可能性を示している。
関連論文リスト
- Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示す。
本稿では,テキストベースの生成IoT(GIoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
大規模言語モデル(LLM)は、言語理解および生成タスクにおいて顕著なパフォーマンスを達成した。
ビジネスプロセスにおけるLCMの有用性と準備性について概説する。
論文 参考訳(メタデータ) (2024-06-09T02:36:00Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
大規模な現実世界のAPIを制御するために設計された新しいツール呼び出しパイプラインを導入します。
このパイプラインは人間のタスク解決プロセスを反映し、複雑な実際のユーザクエリに対処する。
ToolBenchベンチマークにおけるSum2Actパイプラインの実証的な評価は、大幅なパフォーマンス向上を示している。
論文 参考訳(メタデータ) (2024-02-28T08:42:23Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Advancing Transformer Architecture in Long-Context Large Language
Models: A Comprehensive Survey [18.930417261395906]
トランスフォーマーベースの大規模言語モデル(LLM)は、知識ベース、ヒューマンインタフェース、動的エージェントなど様々な分野に適用されている。
本稿では,トランスフォーマーをベースとしたLLMアーキテクチャの最近の進歩について,LLMの長期的コンテキスト能力の向上を目的とした調査を行う。
論文 参考訳(メタデータ) (2023-11-21T04:59:17Z) - Assessing Logical Puzzle Solving in Large Language Models: Insights from a Minesweeper Case Study [10.95835611110119]
我々は、Large Language Models (LLM) になじみのないフォーマットで設計された新しいタスク、Minesweeperを導入する。
このタスクは、隣接するオープンセルが提供する数値的な手がかりに基づいて、LLMが鉱山の位置を特定することを課題とする。
我々の実験は、先進的な GPT-4 モデルによる試行を含むもので、LLM は、この課題に必要な基礎的能力を持っているが、Minesweeper を解くために必要な一貫性のある多段階論理的推論プロセスにこれらを統合するのに苦労していることを示している。
論文 参考訳(メタデータ) (2023-11-13T15:11:26Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation
with Large Language Models [12.708117108874083]
大きな言語モデル(LLM)は、ゼロショットで自然言語の意図を与えられたコードスニペットを生成する。
従来の研究は、タスク固有のプロンプト例でLLM生成プロセスを導く戦略として、インコンテキストラーニング(ICL)を探求していた。
本稿では,本論文の総合的研究について述べる。
自動コード生成シナリオにおけるLLMのためのPEFT技術。
論文 参考訳(メタデータ) (2023-08-21T04:31:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。