Plug-and-Play Adaptation for Continuously-updated QA
- URL: http://arxiv.org/abs/2204.12785v1
- Date: Wed, 27 Apr 2022 09:11:16 GMT
- Title: Plug-and-Play Adaptation for Continuously-updated QA
- Authors: Kyungjae Lee, Wookje Han, Seung-won Hwang, Hwaran Lee, Joonsuk Park,
Sang-Woo Lee
- Abstract summary: Language models (LMs) have shown great potential as implicit knowledge bases (KBs)
For their practical use, knowledge in LMs need to be updated periodically.
We propose a novel task--Continuously-updated QA--in which multiple large-scale updates are made to LMs.
- Score: 21.665681980293137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models (LMs) have shown great potential as implicit knowledge bases
(KBs). And for their practical use, knowledge in LMs need to be updated
periodically. However, existing tasks to assess LMs' efficacy as KBs do not
adequately consider multiple large-scale updates. To this end, we first propose
a novel task--Continuously-updated QA (CuQA)--in which multiple large-scale
updates are made to LMs, and the performance is measured with respect to the
success in adding and updating knowledge while retaining existing knowledge. We
then present LMs with plug-in modules that effectively handle the updates.
Experiments conducted on zsRE QA and NQ datasets show that our method
outperforms existing approaches. We find that our method is 4x more effective
in terms of updates/forgets ratio, compared to a fine-tuning baseline.
Related papers
- CaKE: Circuit-aware Editing Enables Generalizable Knowledge Learners [88.35958039968081]
CaKE (Circuit-aware Knowledge Editing) is a novel method that enables more effective integration of updated knowledge in large language models.
Results show that CaKE enables more accurate and consistent use of updated knowledge across related reasoning tasks.
arXiv Detail & Related papers (2025-03-20T17:14:34Z) - Knowledge Editing through Chain-of-Thought [12.270274049887298]
Large Language Models (LLMs) have demonstrated exceptional capabilities across a wide range of natural language processing (NLP) tasks.
Keeping these models up-to-date with evolving world knowledge remains a significant challenge due to the high costs of frequent retraining.
We propose EditCoT, a novel knowledge editing framework that flexibly and efficiently updates LLMs across various tasks without retraining.
arXiv Detail & Related papers (2024-12-23T17:17:50Z) - KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.
We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.
Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - KIF: Knowledge Identification and Fusion for Language Model Continual Learning [41.28933724210434]
We introduce a novel framework for language models, named Knowledge Identification and Fusion (KIF)
KIF segregates the model into'skill units' based on parameter dependencies, allowing for more precise control.
It employs a novel group-wise knowledge identification technique to ascertain the importance distribution of skill units for a new task.
As a result, KIF achieves an optimal balance between retaining prior knowledge and excelling in new tasks.
arXiv Detail & Related papers (2024-08-09T17:44:45Z) - Towards Adapting Reinforcement Learning Agents to New Tasks: Insights from Q-Values [8.694989771294013]
Policy gradient methods can still be useful in many domains as long as we can wrangle with how to exploit them in a sample efficient way.
We explore the chaotic nature of DQNs in reinforcement learning, while understanding how the information that they retain when trained can be repurposed for adapting a model to different tasks.
arXiv Detail & Related papers (2024-07-14T21:28:27Z) - Knowledge Editing in Language Models via Adapted Direct Preference Optimization [50.616875565173274]
Large Language Models (LLMs) can become outdated over time.
Knowledge Editing aims to overcome this challenge using weight updates that do not require expensive retraining.
arXiv Detail & Related papers (2024-06-14T11:02:21Z) - Time Sensitive Knowledge Editing through Efficient Finetuning [35.79991957163508]
Large Language Models (LLMs) have demonstrated impressive capability in different tasks and are bringing transformative changes to many domains.
Keeping the knowledge in LLMs up-to-date remains a challenge once pretraining is complete.
Existing locate-and-edit knowledge editing (KE) method suffers from two limitations.
arXiv Detail & Related papers (2024-06-06T20:41:36Z) - Propagating Knowledge Updates to LMs Through Distillation [97.3628651636153]
We show that a context-based approach can both impart knowledge about entities and propagate that knowledge to enable broader inferences.
Our experiments demonstrate that this approach is more effective at propagating knowledge updates than fine-tuning and other gradient-based knowledge-editing methods.
arXiv Detail & Related papers (2023-06-15T17:39:50Z) - Information Association for Language Model Updating by Mitigating
LM-Logical Discrepancy [68.31760483418901]
Large Language Models(LLMs) struggle with providing current information due to the outdated pre-training data.
Existing methods for updating LLMs, such as knowledge editing and continual fine-tuning, have significant drawbacks in generalizability of new information.
We identify the core challenge behind these drawbacks: the LM-logical discrepancy featuring the difference between language modeling probabilities and logical probabilities.
arXiv Detail & Related papers (2023-05-29T19:48:37Z) - Long-Tailed Question Answering in an Open World [46.67715607552547]
We define Open Long-Tailed QA (OLTQA) as learning from long-tailed distributed data.
We propose an OLTQA model that encourages knowledge sharing between head, tail and unseen tasks.
On a large-scale OLTQA dataset, our model consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2023-05-11T04:28:58Z) - When Not to Trust Language Models: Investigating Effectiveness of
Parametric and Non-Parametric Memories [58.3421305091187]
This paper aims to understand LMs' strengths and limitations in memorizing factual knowledge.
We find that LMs struggle with less popular factual knowledge, and that scaling fails to appreciably improve memorization of factual knowledge in the long tail.
We devise a simple, yet effective, method for powerful and efficient retrieval-augmented LMs, which retrieves non-parametric memories only when necessary.
arXiv Detail & Related papers (2022-12-20T18:30:15Z) - Automatically Recommend Code Updates: Are We There Yet? [14.997510035210842]
We present the first evaluation of state-of-the-art CodeLMs for automatically recommending code updates.
Our results reveal that while CodeLMs perform well in settings that ignore temporal information, they struggle in more realistic time-wise scenarios.
Our findings highlight the significant gap between the perceived and actual effectiveness of CodeLMs for real-world code update recommendation.
arXiv Detail & Related papers (2022-09-15T05:07:25Z) - StreamingQA: A Benchmark for Adaptation to New Knowledge over Time in
Question Answering Models [31.43391633383255]
We construct a new large-scale dataset, StreamingQA, with human written and generated questions asked on a given date.
We evaluate our models quarterly as they read new articles not seen in pre-training.
We show that parametric models can be updated without full retraining, while avoiding catastrophic forgetting.
arXiv Detail & Related papers (2022-05-23T15:33:41Z) - Meta-learning the Learning Trends Shared Across Tasks [123.10294801296926]
Gradient-based meta-learning algorithms excel at quick adaptation to new tasks with limited data.
Existing meta-learning approaches only depend on the current task information during the adaptation.
We propose a 'Path-aware' model-agnostic meta-learning approach.
arXiv Detail & Related papers (2020-10-19T08:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.