Anomaly Detection by Leveraging Incomplete Anomalous Knowledge with
Anomaly-Aware Bidirectional GANs
- URL: http://arxiv.org/abs/2204.13335v2
- Date: Sun, 1 May 2022 05:27:15 GMT
- Title: Anomaly Detection by Leveraging Incomplete Anomalous Knowledge with
Anomaly-Aware Bidirectional GANs
- Authors: Bowen Tian, Qinliang Su, Jian Yin
- Abstract summary: The goal of anomaly detection is to identify anomalous samples from normal ones.
In this paper, a small number of anomalies are assumed to be available at the training stage, but they are assumed to be collected only from several anomaly types.
We propose to learn a probability distribution that can not only model the normal samples, but also guarantee to assign low density values for the collected anomalies.
- Score: 15.399369134281775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of anomaly detection is to identify anomalous samples from normal
ones. In this paper, a small number of anomalies are assumed to be available at
the training stage, but they are assumed to be collected only from several
anomaly types, leaving the majority of anomaly types not represented in the
collected anomaly dataset at all. To effectively leverage this kind of
incomplete anomalous knowledge represented by the collected anomalies, we
propose to learn a probability distribution that can not only model the normal
samples, but also guarantee to assign low density values for the collected
anomalies. To this end, an anomaly-aware generative adversarial network (GAN)
is developed, which, in addition to modeling the normal samples as most GANs
do, is able to explicitly avoid assigning probabilities for collected anomalous
samples. Moreover, to facilitate the computation of anomaly detection criteria
like reconstruction error, the proposed anomaly-aware GAN is designed to be
bidirectional, attaching an encoder for the generator. Extensive experimental
results demonstrate that our proposed method is able to effectively make use of
the incomplete anomalous information, leading to significant performance gains
compared to existing methods.
Related papers
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Anomaly Heterogeneity Learning for Open-set Supervised Anomaly Detection [26.08881235151695]
Open-set supervised anomaly detection (OSAD) aims at utilizing a few samples of anomaly classes seen during training to detect unseen anomalies.
We introduce a novel approach, namely Anomaly Heterogeneity Learning (AHL), that simulates a diverse set of heterogeneous anomaly distributions.
We show that AHL can 1) substantially enhance different state-of-the-art OSAD models in detecting seen and unseen anomalies, and 2) effectively generalize to unseen anomalies in new domains.
arXiv Detail & Related papers (2023-10-19T14:47:11Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
We propose a novel saliency-guided data augmentation method, SaliencyCut, to produce pseudo but more common anomalies.
We then design a novel patch-wise residual module in the anomaly learning head to extract and assess the fine-grained anomaly features from each sample.
arXiv Detail & Related papers (2023-06-14T08:55:36Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
A few labeled anomaly examples are often available in many real-world applications.
These anomaly examples provide valuable knowledge about the application-specific abnormality.
Those anomalies seen during training often do not illustrate every possible class of anomaly.
This paper tackles open-set supervised anomaly detection.
arXiv Detail & Related papers (2022-03-28T05:21:37Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Dual-encoder Bidirectional Generative Adversarial Networks for Anomaly
Detection [0.0]
We develop a dual-encoder in a bidirectional GAN architecture that is trained simultaneously with a generator and a discriminator network.
We show that our proposed method performs well in capturing the distribution of normal samples, thereby improving anomaly detection on GAN-based models.
arXiv Detail & Related papers (2020-12-22T05:05:33Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - Using Ensemble Classifiers to Detect Incipient Anomalies [12.947364178385637]
Incipient anomalies present milder symptoms compared to severe ones.
These anomalies can be easily mistaken as normal operating conditions.
We show that ensemble learning methods can give improved performance on incipient anomalies.
arXiv Detail & Related papers (2020-08-20T00:00:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
Pairwise Relation prediction Network (PReNet) learns pairwise relation features and anomaly scores.
PReNet can detect any seen/unseen abnormalities that fit the learned pairwise abnormal patterns.
Empirical results on 12 real-world datasets show that PReNet significantly outperforms nine competing methods in detecting seen and unseen anomalies.
arXiv Detail & Related papers (2019-10-30T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.