GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection
- URL: http://arxiv.org/abs/2406.07487v3
- Date: Mon, 9 Sep 2024 07:23:36 GMT
- Title: GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection
- Authors: Hang Yao, Ming Liu, Haolin Wang, Zhicun Yin, Zifei Yan, Xiaopeng Hong, Wangmeng Zuo,
- Abstract summary: Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
- Score: 60.78684630040313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have shown superior performance on unsupervised anomaly detection tasks. Since trained with normal data only, diffusion models tend to reconstruct normal counterparts of test images with certain noises added. However, these methods treat all potential anomalies equally, which may cause two main problems. From the global perspective, the difficulty of reconstructing images with different anomalies is uneven. Therefore, instead of utilizing the same setting for all samples, we propose to predict a particular denoising step for each sample by evaluating the difference between image contents and the priors extracted from diffusion models. From the local perspective, reconstructing abnormal regions differs from normal areas even in the same image. Theoretically, the diffusion model predicts a noise for each step, typically following a standard Gaussian distribution. However, due to the difference between the anomaly and its potential normal counterpart, the predicted noise in abnormal regions will inevitably deviate from the standard Gaussian distribution. To this end, we propose introducing synthetic abnormal samples in training to encourage the diffusion models to break through the limitation of standard Gaussian distribution, and a spatial-adaptive feature fusion scheme is utilized during inference. With the above modifications, we propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection, which introduces appealing flexibility and achieves anomaly-free reconstruction while retaining as much normal information as possible. Extensive experiments are conducted on three commonly used anomaly detection datasets (MVTec-AD, MPDD, and VisA) and a printed circuit board dataset (PCB-Bank) we integrated, showing the effectiveness of the proposed method.
Related papers
- Ensembled Cold-Diffusion Restorations for Unsupervised Anomaly Detection [7.94529540044472]
Unsupervised Anomaly Detection (UAD) methods aim to identify anomalies in test samples comparing them with a normative distribution learned from a dataset known to be anomaly-free.
Approaches based on generative models offer interpretability by generating anomaly-free versions of test images, but are typically unable to identify subtle anomalies.
We present a novel method that combines the strengths of both strategies: a generative cold-diffusion pipeline that is trained with the objective of turning synthetically-corrupted images back to their normal, original appearance.
arXiv Detail & Related papers (2024-07-09T08:02:46Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Anomaly Heterogeneity Learning for Open-set Supervised Anomaly Detection [26.08881235151695]
Open-set supervised anomaly detection (OSAD) aims at utilizing a few samples of anomaly classes seen during training to detect unseen anomalies.
We introduce a novel approach, namely Anomaly Heterogeneity Learning (AHL), that simulates a diverse set of heterogeneous anomaly distributions.
We show that AHL can 1) substantially enhance different state-of-the-art OSAD models in detecting seen and unseen anomalies, and 2) effectively generalize to unseen anomalies in new domains.
arXiv Detail & Related papers (2023-10-19T14:47:11Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - CRADL: Contrastive Representations for Unsupervised Anomaly Detection
and Localization [2.8659934481869715]
Unsupervised anomaly detection in medical imaging aims to detect and localize arbitrary anomalies without requiring anomalous data during training.
Most current state-of-the-art methods use latent variable generative models operating directly on the images.
We propose CRADL whose core idea is to model the distribution of normal samples directly in the low-dimensional representation space of an encoder trained with a contrastive pretext-task.
arXiv Detail & Related papers (2023-01-05T16:07:49Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Anomaly Detection by Leveraging Incomplete Anomalous Knowledge with
Anomaly-Aware Bidirectional GANs [15.399369134281775]
The goal of anomaly detection is to identify anomalous samples from normal ones.
In this paper, a small number of anomalies are assumed to be available at the training stage, but they are assumed to be collected only from several anomaly types.
We propose to learn a probability distribution that can not only model the normal samples, but also guarantee to assign low density values for the collected anomalies.
arXiv Detail & Related papers (2022-04-28T08:12:49Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Acoustic anomaly detection via latent regularized gaussian mixture
generative adversarial networks [30.970377781506258]
It suffers from the class imbalance issue and the lacking in the abnormal instances.
In this paper, a novel Gaussian Mixture Generative Adrial Network (GMGAN) is proposed under semi-supervised learning framework.
Experiments show that our model has clear superiority over previous methods, and achieves the state-of-the-art results on DCASE dataset.
arXiv Detail & Related papers (2020-02-04T03:39:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.