SDIP: Self-Reinforcement Deep Image Prior Framework for Image Processing
- URL: http://arxiv.org/abs/2404.12142v1
- Date: Wed, 17 Apr 2024 16:50:14 GMT
- Title: SDIP: Self-Reinforcement Deep Image Prior Framework for Image Processing
- Authors: Ziyu Shu, Zhixin Pan,
- Abstract summary: Deep image prior (DIP) proposed in recent research has revealed the inherent trait of convolutional neural networks (CNN) for capturing substantial low-level image statistics priors.
In this paper, we propose the self-reinforcement deep image prior (P) as an improved version of the original DIP.
- Score: 0.7673339435080445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep image prior (DIP) proposed in recent research has revealed the inherent trait of convolutional neural networks (CNN) for capturing substantial low-level image statistics priors. This framework efficiently addresses the inverse problems in image processing and has induced extensive applications in various domains. However, as the whole algorithm is initialized randomly, the DIP algorithm often lacks stability. Thus, this method still has space for further improvement. In this paper, we propose the self-reinforcement deep image prior (SDIP) as an improved version of the original DIP. We observed that the changes in the DIP networks' input and output are highly correlated during each iteration. SDIP efficiently utilizes this trait in a reinforcement learning manner, where the current iteration's output is utilized by a steering algorithm to update the network input for the next iteration, guiding the algorithm toward improved results. Experimental results across multiple applications demonstrate that our proposed SDIP framework offers improvement compared to the original DIP method and other state-of-the-art methods.
Related papers
- Chasing Better Deep Image Priors between Over- and Under-parameterization [63.8954152220162]
We study a novel "lottery image prior" (LIP) by exploiting DNN inherent sparsity.
LIPworks significantly outperform deep decoders under comparably compact model sizes.
We also extend LIP to compressive sensing image reconstruction, where a pre-trained GAN generator is used as the prior.
arXiv Detail & Related papers (2024-10-31T17:49:44Z) - Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation [7.314877483509877]
Shape compactness is a key geometrical property to describe interesting regions in many image segmentation tasks.
We propose two novel algorithms to solve the introduced image segmentation problem that incorporates a shape-compactness prior.
The proposed algorithms significantly improve IoU by 20% training on a highly noisy image dataset.
arXiv Detail & Related papers (2024-05-23T11:05:35Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
We propose a unified framework to build PNNs for the Gaussian denoising task, based on both the dual-FB and the primal-dual Chambolle-Pock algorithms.
We also show that accelerated versions of these algorithms enable skip connections in the associated NN layers.
arXiv Detail & Related papers (2023-08-06T15:32:16Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Deep Generalized Unfolding Networks for Image Restoration [16.943609020362395]
We propose a Deep Generalized Unfolding Network (DGUNet) for image restoration.
We integrate a gradient estimation strategy into the gradient descent step of the Proximal Gradient Descent (PGD) algorithm.
Our method is superior in terms of state-of-the-art performance, interpretability, and generalizability.
arXiv Detail & Related papers (2022-04-28T08:39:39Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution.
We propose a new image restoration framework that is based on minimizing a loss function that includes a "projected-version" of the Generalized SteinUnbiased Risk Estimator (GSURE) and parameterization of the latent image by a CNN.
arXiv Detail & Related papers (2021-02-04T08:52:46Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
This paper proposes a new deep-unfolding-based network design for the problem of Robust Principal Component Analysis (RPCA)
Unlike existing designs, our approach focuses on modeling the temporal correlation between the sparse representations of consecutive video frames.
Experimentation using the moving MNIST dataset shows that the proposed network outperforms a recently proposed state-of-the-art RPCA network in the task of video foreground-background separation.
arXiv Detail & Related papers (2020-10-02T11:40:09Z) - Blind Image Restoration with Flow Based Priors [19.190289348734215]
In a blind setting with unknown degradations, a good prior remains crucial.
We propose using normalizing flows to model the distribution of the target content and to use this as a prior in a maximum a posteriori (MAP) formulation.
To the best of our knowledge, this is the first work that explores normalizing flows as prior in image enhancement problems.
arXiv Detail & Related papers (2020-09-09T21:40:11Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - BP-DIP: A Backprojection based Deep Image Prior [49.375539602228415]
We propose two image restoration approaches: (i) Deep Image Prior (DIP), which trains a convolutional neural network (CNN) from scratch in test time using the degraded image; and (ii) a backprojection (BP) fidelity term, which is an alternative to the standard least squares loss that is usually used in previous DIP works.
We demonstrate the performance of the proposed method, termed BP-DIP, on the deblurring task and show its advantages over the plain DIP, with both higher PSNR values and better inference run-time.
arXiv Detail & Related papers (2020-03-11T17:09:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.