論文の概要: Poly-CAM: High resolution class activation map for convolutional neural
networks
- arxiv url: http://arxiv.org/abs/2204.13359v1
- Date: Thu, 28 Apr 2022 09:06:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-29 23:15:06.049022
- Title: Poly-CAM: High resolution class activation map for convolutional neural
networks
- Title(参考訳): poly-cam:畳み込みニューラルネットワークのための高分解能クラスアクティベーションマップ
- Authors: Alexandre Englebert, Olivier Cornu, Christophe De Vleeschouwer
- Abstract要約: 畳み込みニューラルネットワークから派生した 解像度マップは 画像の特徴が ネットワーク予測を正当化する 精度で 位置決めに失敗する
これは、これらの写像が CAM (Zhou et al., 2016) のように低分解能であるか、摂動法 (Zeiler and Fergus, 2014) で滑らかであるか、あるいは広範囲に広がるピーク点に対応するためである。
対照的に、我々の研究は、以前のネットワークレイヤからの情報と後のレイヤからの情報を組み合わせて、高解像度のClass Activation Mapを作成することを提案する。
- 参考スコア(独自算出の注目度): 88.29660600055715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The need for Explainable AI is increasing with the development of deep
learning. The saliency maps derived from convolutional neural networks
generally fail in localizing with accuracy the image features justifying the
network prediction. This is because those maps are either low-resolution as for
CAM [Zhou et al., 2016], or smooth as for perturbation-based methods [Zeiler
and Fergus, 2014], or do correspond to a large number of widespread peaky spots
as for gradient-based approaches [Sundararajan et al., 2017, Smilkov et al.,
2017]. In contrast, our work proposes to combine the information from earlier
network layers with the one from later layers to produce a high resolution
Class Activation Map that is competitive with the previous art in term of
insertion-deletion faithfulness metrics, while outperforming it in term of
precision of class-specific features localization.
- Abstract(参考訳): ディープラーニングの発展に伴い、説明可能なAIの必要性が高まっている。
畳み込みニューラルネットワークに由来する塩分マップは、ネットワーク予測を正当化する画像特徴を精度良くローカライズするのに失敗する。
これは、これらの地図がcam(zhou et al., 2016)のように低解像度であるか、摂動に基づく手法(zeiler and fergus, 2014)でスムーズであるか、勾配に基づくアプローチで広く分布するピークスポット(sundararajan et al., 2017 smilkov et al., 2017)に対応しているためである。
これとは対照的に,本稿では,従来のネットワークレイヤの情報と後続のレイヤの情報を組み合わせて,挿入削除忠実度指標の観点から従来の技術と競合する高解像度のクラス活性化マップを作成することを提案する。
関連論文リスト
- Rethinking Class Activation Maps for Segmentation: Revealing Semantic
Information in Shallow Layers by Reducing Noise [2.462953128215088]
クラス活性化マップの性能に対する大きな制限は、畳み込みニューラルネットワークの最後の層にある特徴マップの小さな空間分解能である。
本稿では, 雑音を正の勾配で除去し, ノイズを除去する簡易な勾配法を提案する。
提案手法は,他のCAM関連手法にも容易に適用可能であり,高品質なクラスアクティベーションマップの取得が容易である。
論文 参考訳(メタデータ) (2023-08-04T03:04:09Z) - CEC-CNN: A Consecutive Expansion-Contraction Convolutional Network for
Very Small Resolution Medical Image Classification [0.8108972030676009]
深層・中層・浅層からのマルチスケール特徴を保存できる新しいCNNアーキテクチャを提案する。
膵管腺癌(PDAC)CTの超低解像度パッチのデータセットを用いて,我々のネットワークが最先端のアートモデルより優れていることを示す。
論文 参考訳(メタデータ) (2022-09-27T20:01:12Z) - Shap-CAM: Visual Explanations for Convolutional Neural Networks based on
Shapley Value [86.69600830581912]
クラスアクティベーションマッピングに基づくShap-CAMと呼ばれる新しい視覚的説明法を開発した。
我々は,Shap-CAMが意思決定プロセスの解釈において,より良い視覚的性能と公平性を実現することを実証した。
論文 参考訳(メタデータ) (2022-08-07T00:59:23Z) - Redesigning Multi-Scale Neural Network for Crowd Counting [68.674652984003]
本稿では, 集団カウントのための多スケール密度マップを階層的にマージする, 密度専門家の階層的混合を導入する。
階層構造の中では、すべてのスケールからの貢献を促進するために、専門家の競争とコラボレーションのスキームが提示されます。
実験の結果,提案手法は5つの公開データセット上での最先端性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-08-04T21:49:29Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
本稿では,CNNの長期分布からネットワーク学習を改善するための2つの効果的な修正を提案する。
まず,ネットワーク分類器の学習と予測を改善するために,CAMC (Class Activation Map) モジュールを提案する。
第2に,長期化問題における表現学習における正規化分類器の利用について検討する。
論文 参考訳(メタデータ) (2021-08-29T05:45:03Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
バックプロパゲーション画像のサリエンシは、入力中の個々のピクセルのモデル中心の重要性を推定することにより、モデル予測を説明することを目的としている。
CAMERASは、外部の事前処理を必要とせずに、高忠実度バックプロパゲーション・サリエンシ・マップを計算できる手法である。
論文 参考訳(メタデータ) (2021-06-20T08:20:56Z) - Enhancing Deep Neural Network Saliency Visualizations with Gradual
Extrapolation [0.0]
Grad-CAMやExcit Backpropagationのようなクラスアクティベーションマッピング手法の拡張手法を提案する。
我々のアイデアはGradual Extrapolationと呼ばれ、出力をシャープすることでヒートマップ画像を生成するメソッドを補うことができる。
論文 参考訳(メタデータ) (2021-04-11T07:39:35Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - Blind Image Restoration with Flow Based Priors [19.190289348734215]
未知の劣化を伴う盲点において、優れた先行性は依然として不可欠である。
本稿では, 正規化フローを用いて対象コンテンツの分布をモデル化し, 最大アフターリ(MAP)の定式化に先立ってこれを前もって用いることを提案する。
我々の知る限りでは、これは画像強調問題に先行する正規化フローを探求する最初の研究である。
論文 参考訳(メタデータ) (2020-09-09T21:40:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。