論文の概要: Federated Learning on Heterogeneous and Long-Tailed Data via Classifier
Re-Training with Federated Features
- arxiv url: http://arxiv.org/abs/2204.13399v1
- Date: Thu, 28 Apr 2022 10:35:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-29 14:24:22.161405
- Title: Federated Learning on Heterogeneous and Long-Tailed Data via Classifier
Re-Training with Federated Features
- Title(参考訳): フェデレーション特徴を用いた分類器再訓練による不均一・長尾データのフェデレーション学習
- Authors: Xinyi Shang, Yang Lu, Gang Huang, Hanzi Wang
- Abstract要約: Federated Learning (FL)は、分散機械学習タスクのためのプライバシ保護ソリューションを提供する。
FLモデルの性能を著しく損なう難題の1つは、データ不均一性と長い尾分布の共起である。
We propose a novel privacy-serving FL method for heterogeneous and long-tailed data via Federated Re-training with Federated Features (CreFF)。
- 参考スコア(独自算出の注目度): 24.679535905451758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) provides a privacy-preserving solution for
distributed machine learning tasks. One challenging problem that severely
damages the performance of FL models is the co-occurrence of data heterogeneity
and long-tail distribution, which frequently appears in real FL applications.
In this paper, we reveal an intriguing fact that the biased classifier is the
primary factor leading to the poor performance of the global model. Motivated
by the above finding, we propose a novel and privacy-preserving FL method for
heterogeneous and long-tailed data via Classifier Re-training with Federated
Features (CReFF). The classifier re-trained on federated features can produce
comparable performance as the one re-trained on real data in a
privacy-preserving manner without information leakage of local data or class
distribution. Experiments on several benchmark datasets show that the proposed
CReFF is an effective solution to obtain a promising FL model under
heterogeneous and long-tailed data. Comparative results with the
state-of-the-art FL methods also validate the superiority of CReFF. Our code is
available at https://github.com/shangxinyi/CReFF-FL.
- Abstract(参考訳): Federated Learning (FL)は、分散機械学習タスクのためのプライバシ保護ソリューションを提供する。
flモデルの性能を著しく損なう問題の一つは、実際のflアプリケーションで頻繁に現れるデータの不均一性とロングテール分布の共起である。
本稿では,偏りのある分類器が,グローバルモデルの性能低下につながる主要な要因である,興味深い事実を明らかにする。
そこで本研究では, フェデレート機能付き分類器再訓練(CreFF)による不均一・長期データに対する新規かつプライバシー保護的なFL法を提案する。
フェデレートされた機能で再トレーニングされた分類器は、ローカルデータやクラス分布の情報漏洩なしに、プライバシ保存方式で実データで再トレーニングされたものと同等のパフォーマンスが得られる。
いくつかのベンチマークデータセットにおける実験により、提案するcreffは、不均質で長い尾を持つデータの下で有望なflモデルを得るための有効な解であることが示された。
また,最新のFL法との比較により,CreFFの優位性を検証した。
私たちのコードはhttps://github.com/shangxinyi/creff-flで入手できる。
関連論文リスト
- FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
フェデレーション学習は、分散機械学習におけるプライバシの保護という課題にパラダイムを提供する。
伝統的なアプローチは、グローバルな長期データにおけるクラスワイドバイアスの現象に対処できない。
新しい手法であるFedLFは、適応ロジット調整、連続クラス中心最適化、特徴デコリレーションという、局所的なトレーニングフェーズに3つの修正を導入している。
論文 参考訳(メタデータ) (2024-09-18T16:25:29Z) - Synthetic Data Aided Federated Learning Using Foundation Models [4.666380225768727]
ファウンデーションモデル(DPSDA-FL)を用いたFederated Learningを支援する微分プライベートデータを提案する。
実験の結果,DPSDA-FLは,非IID問題のあるFLにおいて,クラスリコールとクラス分類精度を最大26%, 9%向上できることがわかった。
論文 参考訳(メタデータ) (2024-07-06T20:31:43Z) - FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-preserving Feature Augmentation [15.298650496155508]
フェデレートラーニング(FL)は、ローカルデータを中央サーバに転送することなく、多数のエッジデバイスに分散したデータを活用することによって、モデル開発を可能にする。
既存のFLメソッドは、デバイス間の不足やラベルスキュードデータを扱う際に問題に直面し、結果としてローカルモデルが過度に適合し、ドリフトする。
我々はFLeaと呼ばれる先駆的なフレームワークを提案し、以下のキーコンポーネントを取り入れた。
論文 参考訳(メタデータ) (2024-06-13T19:28:08Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Exploiting Label Skews in Federated Learning with Model Concatenation [39.38427550571378]
Federated Learning(FL)は、生データを交換することなく、さまざまなデータオーナでディープラーニングを実行するための、有望なソリューションとして登場した。
非IID型では、ラベルスキューは困難であり、画像分類やその他のタスクで一般的である。
我々は,これらの局所モデルをグローバルモデルの基礎として分解する,シンプルで効果的なアプローチであるFedConcatを提案する。
論文 参考訳(メタデータ) (2023-12-11T10:44:52Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
パーソナライズドラーニング(PFL)のための新しいGAN(Generative Adversarial Network)の共有と集約戦略を提案する。
PFL-GANは、異なるシナリオにおけるクライアントの不均一性に対処する。より具体的には、まずクライアント間の類似性を学び、次に重み付けされた協調データアグリゲーションを開発する。
いくつかのよく知られたデータセットに対する厳密な実験による実験結果は、PFL-GANの有効性を示している。
論文 参考訳(メタデータ) (2023-08-23T22:38:35Z) - Federated Learning from Only Unlabeled Data with
Class-Conditional-Sharing Clients [98.22390453672499]
Supervised Federated Learning (FL)は、複数のクライアントがラベル付きデータを共有せずにトレーニングされたモデルを共有することを可能にする。
本研究では,教師なし学習(FedUL)のフェデレーションを提案し,各クライアントのラベル付きデータにラベル付きデータを変換する。
論文 参考訳(メタデータ) (2022-04-07T09:12:00Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Multi-Center Federated Learning [62.32725938999433]
フェデレートラーニング(FL)は、分散ラーニングにおけるデータのプライバシを保護する。
単にデータにアクセスせずに、ユーザーからローカルな勾配を収集するだけだ。
本稿では,新しいマルチセンターアグリゲーション機構を提案する。
論文 参考訳(メタデータ) (2021-08-19T12:20:31Z) - TiFL: A Tier-based Federated Learning System [17.74678728280232]
フェデレートラーニング(FL)は、プライバシ要件に違反することなく、多くのクライアント間で共有モデルを学ぶことを可能にする。
従来のFLシステムのトレーニング時間とモデル精度に,資源とデータの不均一性が大きな影響を与えることを示すケーススタディを実施している。
我々は,TiFLを提案する。TiFLは,クライアントをトレーニングパフォーマンスに基づいて階層に分割し,トレーニングラウンド毎に同一階層から選択する,階層ベースのフェデレートラーニングシステムである。
論文 参考訳(メタデータ) (2020-01-25T01:40:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。