論文の概要: Simplifying Multilingual News Clustering Through Projection From a
Shared Space
- arxiv url: http://arxiv.org/abs/2204.13418v1
- Date: Thu, 28 Apr 2022 11:32:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-29 21:57:56.942426
- Title: Simplifying Multilingual News Clustering Through Projection From a
Shared Space
- Title(参考訳): 共有空間からの投影による多言語ニュースクラスタリングの簡略化
- Authors: Jo\~ao Santos, Afonso Mendes and Sebasti\~ao Miranda
- Abstract要約: メディア監視のための多言語ニュース記事の整理とクラスタ化は,ニュース記事のリアルタイムな追跡に不可欠である。
このタスクのほとんどのアプローチは、高リソース言語(主に英語)に焦点を当てており、低リソース言語は無視されている。
言語固有の機能に依存することなく、よりシンプルな文書ストリームをクラスタリングできるオンラインシステムを提案する。
- 参考スコア(独自算出の注目度): 0.39560040546164016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of organizing and clustering multilingual news articles for media
monitoring is essential to follow news stories in real time. Most approaches to
this task focus on high-resource languages (mostly English), with low-resource
languages being disregarded. With that in mind, we present a much simpler
online system that is able to cluster an incoming stream of documents without
depending on language-specific features. We empirically demonstrate that the
use of multilingual contextual embeddings as the document representation
significantly improves clustering quality. We challenge previous crosslingual
approaches by removing the precondition of building monolingual clusters. We
model the clustering process as a set of linear classifiers to aggregate
similar documents, and correct closely-related multilingual clusters through
merging in an online fashion. Our system achieves state-of-the-art results on a
multilingual news stream clustering dataset, and we introduce a new evaluation
for zero-shot news clustering in multiple languages. We make our code available
as open-source.
- Abstract(参考訳): メディア監視のための多言語ニュース記事の整理とクラスタ化は,ニュース記事のリアルタイムな追跡に不可欠である。
このタスクのほとんどのアプローチは、高リソース言語(主に英語)に焦点を当てており、低リソース言語は無視されている。
そこで我々は,言語固有の機能に依存することなく,よりシンプルな文書ストリームをクラスタリングできるオンラインシステムを提案する。
文書表現における多言語文脈埋め込みの使用はクラスタリングの品質を大幅に向上させることを示す。
単言語クラスタ構築の前提条件を取り除き,従来の言語間アプローチに挑戦する。
我々は,類似文書を集約するための線形分類器のセットとしてクラスタリングプロセスをモデル化し,密接に関連する多言語クラスタをオンラインの方法でマージすることにより修正する。
本システムは,多言語ニュースストリームクラスタリングデータセット上で最先端の成果を達成し,複数言語におけるゼロショットニュースクラスタリングの新しい評価手法を提案する。
コードをオープンソースとして公開しています。
関連論文リスト
- T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - Efficient Spoken Language Recognition via Multilabel Classification [53.662747523872305]
我々のモデルは,現在の最先端手法よりも桁違いに小さく,高速でありながら,競争力のある結果が得られることを示す。
我々のマルチラベル戦略は、マルチクラス分類よりも非ターゲット言語の方が堅牢である。
論文 参考訳(メタデータ) (2023-06-02T23:04:19Z) - Research on Multilingual News Clustering Based on Cross-Language Word
Embeddings [7.401514098389491]
中国語と英語の両方で文レベルのバイリンガルテキストを表現できる知識蒸留を用いて言語間モデルを訓練する。
我々は、ニュースコンテキストにシングルパスクラスタリングアルゴリズムを適用し、より適用できるようにする。
論文 参考訳(メタデータ) (2023-05-30T09:24:55Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Graph Neural Network Enhanced Language Models for Efficient Multilingual
Text Classification [8.147244878591014]
本稿では,モノ,クロス,マルチ言語シナリオ下で動作可能な多言語災害関連テキスト分類システムを提案する。
我々のエンドツーエンドのトレーニング可能なフレームワークは、コーパスに代えてグラフニューラルネットワークの汎用性を組み合わせたものです。
我々は、モノ、クロス、マルチ言語分類シナリオにおいて、合計9つの英語、非英語、モノリンガルデータセットについて、我々のフレームワークを評価した。
論文 参考訳(メタデータ) (2022-03-06T09:05:42Z) - Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking [84.50302759362698]
我々は、事前訓練された多言語モデルの中間微調整により、伝達学習プロセスを強化する。
我々は、パラレルおよび会話型の映画字幕データセットを使用して、言語間中間タスクを設計する。
パラレルなMultiWoZデータセットとMultilingual WoZデータセットの精度を20%向上させる。
論文 参考訳(メタデータ) (2021-09-28T11:22:38Z) - Cross-lingual Text Classification with Heterogeneous Graph Neural
Network [2.6936806968297913]
言語間テキスト分類は、ソース言語上の分類器を訓練し、その知識を対象言語に伝達することを目的としている。
近年の多言語事前学習言語モデル (mPLM) は言語間分類タスクにおいて顕著な結果をもたらす。
言語間テキスト分類のための言語内および言語間における異種情報を統合するための,単純かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2021-05-24T12:45:42Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Scalable Cross-lingual Document Similarity through Language-specific
Concept Hierarchies [0.0]
本稿では,並列あるいは同等のコーパスを必要としない教師なし文書類似性アルゴリズムを提案する。
このアルゴリズムは、文書から自動的に作成されたトピックを多言語ラベルでアノテートします。
JCR-Acquis corporaの英語、スペイン語、フランス語版で実施された実験は、同様のコンテンツによる文書の分類と分類に関する有望な結果を明らかにします。
論文 参考訳(メタデータ) (2020-12-15T10:42:40Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z) - Investigating an approach for low resource language dataset creation,
curation and classification: Setswana and Sepedi [2.3801001093799115]
SetswanaとSepediのニュースの見出しに焦点を当てたデータセットを作成します。
ニューストピックの分類タスクも作成します。
本稿では,低リソース言語に適したデータ拡張手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T13:58:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。