論文の概要: TJ4DRadSet: A 4D Radar Dataset for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2204.13483v2
- Date: Sat, 30 Apr 2022 06:15:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 11:44:00.083962
- Title: TJ4DRadSet: A 4D Radar Dataset for Autonomous Driving
- Title(参考訳): TJ4DRadSet:自動運転のための4Dレーダデータセット
- Authors: Lianqing Zheng, Zhixiong Ma, Xichan Zhu, Bin Tan, Sen Li, Kai Long,
Weiqi Sun, Sihan Chen, Lu Zhang, Mengyue Wan, Libo Huang, Jie Bai
- Abstract要約: 我々は、TJ4DRadSetという自律走行データセットを導入し、4Dレーダー、ライダー、カメラ、および合計40Kフレームのシーケンスからなるマルチモーダルセンサーを含む。
我々は,4次元レーダポイント雲に対するディープラーニング手法の有効性を示すために,データセットのための4次元レーダベースの3次元オブジェクト検出ベースラインを提供する。
- 参考スコア(独自算出の注目度): 16.205201694162092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The new generation of 4D high-resolution imaging radar provides not only a
huge amount of point cloud but also additional elevation measurement, which has
a great potential of 3D sensing in autonomous driving. In this paper, we
introduce an autonomous driving dataset named TJ4DRadSet, including multi-modal
sensors that are 4D radar, lidar, camera and GNSS, with about 40K frames in
total. 7757 frames within 44 consecutive sequences in various driving scenarios
are well annotated with 3D bounding boxes and track id. We provide a 4D
radar-based 3D object detection baseline for our dataset to demonstrate the
effectiveness of deep learning methods for 4D radar point clouds.
- Abstract(参考訳): 次世代の4D高解像度イメージングレーダーは、大量の点雲だけでなく、高度測定も可能で、自動運転における3Dセンシングの可能性が大きい。
本稿では,TJ4DRadSetという自律走行データセットを導入し,約40Kフレームの4次元レーダ,ライダー,カメラ,GNSSを含むマルチモーダルセンサについて述べる。
様々な運転シナリオにおける連続44列以内7757フレームは、3DバウンディングボックスとトラックIDでよく注釈付けされている。
4次元レーダーを用いた3次元物体検出ベースラインをデータセットに提供し,4次元レーダーポイントクラウドにおけるディープラーニング手法の有効性を実証した。
関連論文リスト
- V2X-Radar: A Multi-modal Dataset with 4D Radar for Cooperative Perception [45.001209388616736]
V2X-Radarは、4Dレーダを特徴とする世界初の大規模実世界のマルチモーダルデータセットである。
データセットは20KのLiDARフレーム、40Kのカメライメージ、20Kの4Dレーダデータで構成され、5つのカテゴリに350Kの注釈付きバウンディングボックスがある。
多様な研究領域を容易にするために、協調的な知覚のためのV2X-Radar-C、道路側知覚のためのV2X-Radar-I、単車車知覚のためのV2X-Radar-Vを確立する。
論文 参考訳(メタデータ) (2024-11-17T04:59:00Z) - RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar [15.776076554141687]
3D占有に基づく知覚パイプラインは、かなり進歩した自律運転を持つ。
現在の方法では、LiDARやカメラの入力を3D占有率予測に頼っている。
本稿では,4次元イメージングレーダセンサを用いた3次元占有予測手法を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:48:17Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
単分子と点雲に基づく3次元検出の利点を組み合わせたバランスの取れたアプローチを提案する。
本手法では,低コストで低解像度のセンサから得られる3Dポイントを少数必要としている。
3次元検出の精度は最先端の単分子検出法と比較して20%向上する。
論文 参考訳(メタデータ) (2024-04-10T03:54:53Z) - MVFAN: Multi-View Feature Assisted Network for 4D Radar Object Detection [15.925365473140479]
4Dレーダーは、悪天候下での弾力性と費用対効果が認められている。
LiDARやカメラとは異なり、レーダーは厳しい気象条件で損傷を受けないままである。
本稿では,自律走行車のためのレーダーによる3次元物体検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-25T06:10:07Z) - Dual Radar: A Multi-modal Dataset with Dual 4D Radar for Autonomous
Driving [22.633794566422687]
本稿では,2種類の4Dレーダを同時に捕捉した大規模マルチモーダルデータセットについて紹介する。
データセットは151連続して作成され、その大部分は20秒で、10,007の微妙な同期と注釈付きフレームを含んでいる。
我々はデータセットを実験的に検証し、異なる種類の4Dレーダーの研究に有用な結果を提供する。
論文 参考訳(メタデータ) (2023-10-11T15:41:52Z) - SMURF: Spatial Multi-Representation Fusion for 3D Object Detection with
4D Imaging Radar [12.842457981088378]
本稿では,単一4次元イメージングレーダを用いた新しい3次元物体検出手法である空間多重表現融合(SMURF)を提案する。
SMURFは、狭角分解能とレーダ信号のマルチパス伝搬による測定精度の低下を緩和する。
The experimental evaluations on View-of-Delft (VoD) and TJ4DRadSet datasets showed the effective and generalization ability of SMURF。
論文 参考訳(メタデータ) (2023-07-20T11:33:46Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
本稿では,Drive-3DAugと呼ばれる3次元データ拡張手法を提案する。
まずNeural Radiance Field(NeRF)を用いて,背景および前景の3次元モデルの再構成を行う。
そして、予め定義された背景の有効領域に適応した位置と向きの3Dオブジェクトを配置することにより、拡張駆動シーンを得ることができる。
論文 参考訳(メタデータ) (2023-03-18T05:51:05Z) - K-Radar: 4D Radar Object Detection for Autonomous Driving in Various
Weather Conditions [9.705678194028895]
KAIST-Radarは、新しい大規模オブジェクト検出データセットとベンチマークである。
4次元レーダーテンソル(4DRT)データの35Kフレームを含み、ドップラー、レンジ、方位、標高の寸法に沿って電力の測定を行う。
我々は、慎重に校正された高分解能ライダー、サラウンドステレオカメラ、RTK-GPSから補助的な測定を行う。
論文 参考訳(メタデータ) (2022-06-16T13:39:21Z) - 4D-Net for Learned Multi-Modal Alignment [87.58354992455891]
本稿では,3DポイントクラウドとRGBセンシング情報を利用した3Dオブジェクト検出手法である4D-Netを提案する。
様々な特徴表現や抽象化レベルにまたがる新しい接続学習を行い、また幾何学的制約を観察することで、4D情報を組み込むことができる。
論文 参考訳(メタデータ) (2021-09-02T16:35:00Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
駆動シナリオにおける自己教師付き単眼深度推定は、教師付きアプローチに匹敵する性能を達成した。
本稿では,自己監督型深度推定フレームワーク上に費用効率の高いレーダデータを利用する新しい手法であるR4Dynを提案する。
論文 参考訳(メタデータ) (2021-08-10T17:57:03Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
点雲は3次元座標における空間データの密集したコンパイルである。
我々は3次元多目的追跡(MOT)のためのPointNetベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-03T05:36:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。